table of contents
std::laguerre,std::laguerref,std::laguerrel(3) | C++ Standard Libary | std::laguerre,std::laguerref,std::laguerrel(3) |
NAME¶
std::laguerre,std::laguerref,std::laguerrel - std::laguerre,std::laguerref,std::laguerrel
Synopsis¶
double laguerre( unsigned int n, double x );
double laguerre( unsigned int n, float x );
double laguerre( unsigned int n, long double x ); (1)
float laguerref( unsigned int n, float x );
long double laguerrel( unsigned int n, long double x );
double laguerre( unsigned int n, IntegralType x ); (2)
1) Computes the non-associated Laguerre polynomials of the degree n and
argument x.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, laguerre is only guaranteed to be available in
<cmath> if
__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
least
201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any
standard library headers.
Parameters¶
n - the degree of the polynomial, a value of unsigned integer
type
x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the nonassociated Laguerre polynomial of x, that is
e^x
n!
dn
dxn
(xn
e^-x), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* If x is negative, a domain error may occur.
* If n is greater or equal than 128, the behavior is
implementation-defined.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
The Laguerre polynomials are the polynomial solutions of the equation xy,,
+ (1 - x)y,
+ ny = 0.
The first few are:
* laguerre(0, x) = 1.
* laguerre(1, x) = -x + 1.
* laguerre(2, x) =
1
2
[x2
- 4x + 2].
* laguerre(3, x) =
1
6
[-x3
- 9x2
- 18x + 6].
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double L1(double x)
{
return -x + 1;
}
double L2(double x)
{
return 0.5 * (x * x - 4 * x + 2);
}
int main()
{
// spot-checks
std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5)
<< '\n'
<< std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n';
}
Output:¶
0.5=0.5
0.125=0.125
See also¶
assoc_laguerre associated Laguerre polynomials
assoc_laguerref (function)
assoc_laguerrel
External links¶
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.
2024.06.10 | http://cppreference.com |