table of contents
std::hermite,std::hermitef,std::hermitel(3) | C++ Standard Libary | std::hermite,std::hermitef,std::hermitel(3) |
NAME¶
std::hermite,std::hermitef,std::hermitel - std::hermite,std::hermitef,std::hermitel
Synopsis¶
double hermite( unsigned int n, double x );
double hermite( unsigned int n, float x );
double hermite( unsigned int n, long double x ); (1)
float hermitef( unsigned int n, float x );
long double hermitel( unsigned int n, long double x );
double hermite( unsigned int n, IntegralType x ); (2)
1) Computes the (physicist's) Hermite polynomials of the degree n and
argument x.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, hermite is only guaranteed to be available in
<cmath> if
__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
least
201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any
standard library headers.
Parameters¶
n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the order-nHermite polynomial of x,
that is (-1)n
e^x2
dn
dxn
e^-x2
, is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* If n is greater or equal than 128, the behavior is
implementation-defined.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
The Hermite polynomials are the polynomial solutions of the equation u,,
- 2xu,
= -2nu.
The first few are:
* hermite(0, x) = 1.
* hermite(1, x) = 2x.
* hermite(2, x) = 4x2
- 2.
* hermite(3, x) = 8x3
- 12x.
* hermite(4, x) = 16x4
- 48x2
+ 12.
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double H3(double x)
{
return 8 * std::pow(x, 3) - 12 * x;
}
double H4(double x)
{
return 16 * std::pow(x, 4) - 48 * x * x + 12;
}
int main()
{
// spot-checks
std::cout << std::hermite(3, 10) << '=' << H3(10) <<
'\n'
<< std::hermite(4, 10) << '=' << H4(10) << '\n';
}
Output:¶
7880=7880
155212=155212
See also¶
laguerre Laguerre polynomials
laguerref (function)
laguerrel
legendre Legendre polynomials
legendref (function)
legendrel
External links¶
Weisstein, Eric W. ""Hermite Polynomial." From MathWorld--A Wolfram Web Resource.
2024.06.10 | http://cppreference.com |