table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::hermite,std::hermitef,std::hermitel(3) | C++ Standard Libary | std::hermite,std::hermitef,std::hermitel(3) | 
NAME¶
std::hermite,std::hermitef,std::hermitel - std::hermite,std::hermitef,std::hermitel
Synopsis¶
double hermite( unsigned int n, double x );
  
   double hermite( unsigned int n, float x );
  
   double hermite( unsigned int n, long double x ); (1)
  
   float hermitef( unsigned int n, float x );
  
   long double hermitel( unsigned int n, long double x );
  
   double hermite( unsigned int n, IntegralType x ); (2)
  
   1) Computes the (physicist's) Hermite polynomials of the degree n and
    argument x.
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
  
   As all special functions, hermite is only guaranteed to be available in
    <cmath> if
  
   __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
    least
  
   201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
    including any
  
   standard library headers.
Parameters¶
 n - the degree of the polynomial
  
   x - the argument, a value of a floating-point or integral type
Return value¶
 If no errors occur, value of the order-nHermite polynomial of x,
    that is (-1)n
  
   e^x2
  
   dn
  
   dxn
  
   e^-x2
  
   , is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
  
   * If the argument is NaN, NaN is returned and domain error is not reported.
  
   * If n is greater or equal than 128, the behavior is
  implementation-defined.
Notes¶
 Implementations that do not support TR 29124 but support TR
    19768, provide this
  
   function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math.
  
   The Hermite polynomials are the polynomial solutions of the equation u,,
  
   - 2xu,
  
   = -2nu.
  
   The first few are:
  
   * hermite(0, x) = 1.
  
   * hermite(1, x) = 2x.
  
   * hermite(2, x) = 4x2
  
   - 2.
  
   * hermite(3, x) = 8x3
  
   - 12x.
  
   * hermite(4, x) = 16x4
  
   - 48x2
  
   + 12.
Example¶
(works as shown with gcc 6.0)
// Run this code
  
   #define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
  
   #include <cmath>
  
   #include <iostream>
  
   double H3(double x)
  
   {
  
   return 8 * std::pow(x, 3) - 12 * x;
  
   }
  
   double H4(double x)
  
   {
  
   return 16 * std::pow(x, 4) - 48 * x * x + 12;
  
   }
  
   int main()
  
   {
  
   // spot-checks
  
   std::cout << std::hermite(3, 10) << '=' << H3(10) <<
    '\n'
  
   << std::hermite(4, 10) << '=' << H4(10) << '\n';
  
   }
Output:¶
 7880=7880
  
   155212=155212
See also¶
 laguerre Laguerre polynomials
  
   laguerref (function)
  
   laguerrel
  
   legendre Legendre polynomials
  
   legendref (function)
  
   legendrel
External links¶
Weisstein, Eric W. ""Hermite Polynomial." From MathWorld--A Wolfram Web Resource.
| 2024.06.10 | http://cppreference.com |