table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::expint,std::expintf,std::expintl(3) | C++ Standard Libary | std::expint,std::expintf,std::expintl(3) | 
NAME¶
std::expint,std::expintf,std::expintl - std::expint,std::expintf,std::expintl
Synopsis¶
double expint( double arg );
  
   double expint( float arg );
  
   double expint( long double arg ); (1)
  
   float expintf( float arg );
  
   long double expintl( long double arg );
  
   double expint( IntegralType arg ); (2)
  
   1) Computes the exponential integral of arg.
  
   2) A set of overloads or a function template accepting an argument of any
    integral
  
   type. Equivalent to (1) after casting the argument to double.
  
   As all special functions, expint is only guaranteed to be available in
    <cmath> if
  
   __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
    least
  
   201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
    including any
  
   standard library headers.
Parameters¶
arg - value of a floating-point or Integral type
Return value¶
 If no errors occur, value of the exponential integral of arg,
    that is -∫∞
  
   -arg
  
   e^-t
  
   t
  
   dt, is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
  
   * If the argument is NaN, NaN is returned and domain error is not reported.
  
   * If the argument is ±0, -∞ is returned.
Notes¶
 Implementations that do not support TR 29124 but support TR
    19768, provide this
  
   function in the header tr1/cmath and namespace std::tr1.
  
   An implementation of this function is also available in boost.math.
Example¶
(works as shown with gcc 6.0)
// Run this code
  
   #define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
  
   #include <cmath>
  
   #include <iostream>
  
   int main()
  
   {
  
   std::cout << "Ei(0) = " << std::expint(0) << '\n'
  
   << "Ei(1) = " << std::expint(1) << '\n'
  
   << "Gompetz constant = " << -std::exp(1) *
    std::expint(-1) << '\n';
  
   }
Output:¶
 Ei(0) = -inf
  
   Ei(1) = 1.89512
  
   Gompetz constant = 0.596347
External links¶
Weisstein, Eric W. "Exponential Integral." From MathWorld--A Wolfram Web Resource.
| 2024.06.10 | http://cppreference.com |