table of contents
std::expint,std::expintf,std::expintl(3) | C++ Standard Libary | std::expint,std::expintf,std::expintl(3) |
NAME¶
std::expint,std::expintf,std::expintl - std::expint,std::expintf,std::expintl
Synopsis¶
double expint( double arg );
double expint( float arg );
double expint( long double arg ); (1)
float expintf( float arg );
long double expintl( long double arg );
double expint( IntegralType arg ); (2)
1) Computes the exponential integral of arg.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, expint is only guaranteed to be available in
<cmath> if
__STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at
least
201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any
standard library headers.
Parameters¶
arg - value of a floating-point or Integral type
Return value¶
If no errors occur, value of the exponential integral of arg,
that is -∫∞
-arg
e^-t
t
dt, is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* If the argument is ±0, -∞ is returned.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
int main()
{
std::cout << "Ei(0) = " << std::expint(0) << '\n'
<< "Ei(1) = " << std::expint(1) << '\n'
<< "Gompetz constant = " << -std::exp(1) *
std::expint(-1) << '\n';
}
Output:¶
Ei(0) = -inf
Ei(1) = 1.89512
Gompetz constant = 0.596347
External links¶
Weisstein, Eric W. "Exponential Integral." From MathWorld--A Wolfram Web Resource.
2024.06.10 | http://cppreference.com |