table of contents
        
      
      
    - Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::erfc,std::erfcf,std::erfcl(3) | C++ Standard Libary | std::erfc,std::erfcf,std::erfcl(3) | 
NAME¶
std::erfc,std::erfcf,std::erfcl - std::erfc,std::erfcf,std::erfcl
Synopsis¶
 Defined in header <cmath>
  
   float erfc ( float num );
  
   double erfc ( double num ); (until C++23)
  
   long double erfc ( long double num );
  
   /* floating-point-type */ (since C++23)
  
   erfc ( /* floating-point-type */ num ); (constexpr since C++26)
  
   float erfcf( float num ); (1) (2) (since C++11)
  
   (constexpr since C++26)
  
   long double erfcl( long double num ); (3) (since C++11)
  
   (constexpr since C++26)
  
   Additional overloads (since C++11)
  
   Defined in header <cmath>
  
   template< class Integer > (A) (constexpr since C++26)
  
   double erfc ( Integer num );
  
   1-3) Computes the complementary error function of num, that is 1.0 -
    std::erf(num),
  
   but without loss of precision for large num.
  
   The library provides overloads of std::erfc for all cv-unqualified
    floating-point
  
   types as the type of the parameter.
  
   (since C++23)
  
   A) Additional overloads are provided for all integer types, which are
    (since C++11)
  
   treated as double.
Parameters¶
num - floating-point or integer value
Return value¶
 If no errors occur, value of the complementary error function of
    num, that is
  
   \(\frac{2}{\sqrt{\pi} }\int_{num}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)
  
   2
  
   √
  
   π
  
   ∫∞
  
   nume^-t2
  
   dt or \({\small 1-\operatorname{erf}(num)}\)1-erf(num), is returned.
  
   If a range error occurs due to underflow, the correct result (after rounding)
    is
  
   returned.
Error handling¶
Errors are reported as specified in math_errhandling.
  
   If the implementation supports IEEE floating-point arithmetic (IEC
  60559),
  
   * If the argument is +∞, +0 is returned.
  
   * If the argument is -∞, 2 is returned.
  
   * If the argument is NaN, NaN is returned.
Notes¶
For the IEEE-compatible type double, underflow is guaranteed if num > 26.55.
  
   The additional overloads are not required to be provided exactly as (A). They
    only
  
   need to be sufficient to ensure that for their argument num of integer type,
  
   std::erfc(num) has the same effect as
    std::erfc(static_cast<double>(num)).
Example¶
// Run this code
  
   #include <cmath>
  
   #include <iomanip>
  
   #include <iostream>
  
   double normalCDF(double x) // Phi(-∞, x) aka N(x)
  
   {
  
   return std::erfc(-x / std::sqrt(2)) / 2;
  
   }
  
   int main()
  
   {
  
   std::cout << "normal cumulative distribution function:\n"
  
   << std::fixed << std::setprecision(2);
  
   for (double n = 0; n < 1; n += 0.1)
  
   std::cout << "normalCDF(" << n << ") =
    " << 100 * normalCDF(n) << "%\n";
  
   std::cout << "special values:\n"
  
   << "erfc(-Inf) = " << std::erfc(-INFINITY) <<
    '\n'
  
   << "erfc(Inf) = " << std::erfc(INFINITY) << '\n';
  
   }
Output:¶
 normal cumulative distribution function:
  
   normalCDF(0.00) = 50.00%
  
   normalCDF(0.10) = 53.98%
  
   normalCDF(0.20) = 57.93%
  
   normalCDF(0.30) = 61.79%
  
   normalCDF(0.40) = 65.54%
  
   normalCDF(0.50) = 69.15%
  
   normalCDF(0.60) = 72.57%
  
   normalCDF(0.70) = 75.80%
  
   normalCDF(0.80) = 78.81%
  
   normalCDF(0.90) = 81.59%
  
   normalCDF(1.00) = 84.13%
  
   special values:
  
   erfc(-Inf) = 2.00
  
   erfc(Inf) = 0.00
See also¶
 erf
  
   erff
  
   erfl error function
  
   (C++11) (function)
  
   (C++11)
  
   (C++11)
  
   C documentation for
  
   erfc
External links¶
Weisstein, Eric W. "Erfc." From MathWorld — A Wolfram Web Resource.
| 2024.06.10 | http://cppreference.com |