- Tumbleweed 2024.07.05-1.3
 - Leap-16.0
 - Leap-15.6
 
| std::count,std::count_if(3) | C++ Standard Libary | std::count,std::count_if(3) | 
NAME¶
std::count,std::count_if - std::count,std::count_if
Synopsis¶
 Defined in header <algorithm>
  
   template< class InputIt, class T >
  
   (constexpr
  
   typename since C++20)
  
   std::iterator_traits<InputIt>::difference_type (until
  
   C++26)
  
   count( InputIt first, InputIt last, const T&
  
   value );
  
   template< class InputIt, class T = typename
  
   std::iterator_traits
  
   <InputIt>::value_type > (since
  
   constexpr typename C++26)
  
   std::iterator_traits<InputIt>::difference_type
  
   count( InputIt first, InputIt last, const T&
  
   value );
  
   template< class ExecutionPolicy, class ForwardIt,
  
   class T >
  
   (since
  
   typename C++17)
  
   std::iterator_traits<ForwardIt>::difference_type (until
  
   count( ExecutionPolicy&& policy, C++26)
  
   ForwardIt first, ForwardIt last, const T&
  
   value );
  
   template< class ExecutionPolicy, (1)
  
   class ForwardIt, class T = typename
  
   std::iterator_traits
  
   <ForwardIt>::value_type > (since
  
   typename C++26)
  
   std::iterator_traits<ForwardIt>::difference_type
  
   count( ExecutionPolicy&& policy,
  
   (2)
  
   ForwardIt first, ForwardIt last, const T&
  
   value );
  
   template< class InputIt, class UnaryPred >
  
   typename (constexpr
  
   std::iterator_traits<InputIt>::difference_type (3) since
  
   C++20)
  
   count_if( InputIt first, InputIt last, UnaryPred
  
   p );
  
   template< class ExecutionPolicy, class ForwardIt,
  
   class UnaryPred >
  
   typename (since
  
   std::iterator_traits<ForwardIt>::difference_type (4) C++17)
  
   count_if( ExecutionPolicy&& policy,
  
   ForwardIt first, ForwardIt last,
  
   UnaryPred p );
  
   Returns the number of elements in the range [first, last) satisfying specific
  
   criteria.
  
   1) Counts the elements that are equal to value (using operator==).
  
   3) Counts elements for which predicate p returns true.
  
   2,4) Same as (1,3), but executed according to policy.
  
   These overloads participate in overload resolution only if
  
   std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is
    true. (until
  
   C++20)
  
   std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
    is true. (since
  
   C++20)
Parameters¶
 first, last - the range of elements to examine
  
   value - the value to search for
  
   policy - the execution policy to use. See execution policy for details.
  
   unary predicate which returns true for the required elements.
  
   The expression p(v) must be convertible to bool for every argument v
  
   p - of type (possibly const) VT, where VT is the value type of InputIt,
  
   regardless of value category, and must not modify v. Thus, a parameter
  
   type of VT&is not allowed
  
   , nor is VT unless for VT a move is equivalent to a copy
  
   (since C++11).
Type requirements¶
 -
  
   InputIt must meet the requirements of LegacyInputIterator.
  
   -
  
   ForwardIt must meet the requirements of LegacyForwardIterator.
  
   -
  
   UnaryPred must meet the requirements of Predicate.
Return value¶
 The number of iterators it in the range [first, last) satisfying
    the following
  
   condition:
  
   1,2) *it == value is true.
  
   3,4) p(*it) != false is true.
Complexity¶
Given \(\scriptsize N\)N as std::distance(first, last):
  
   1,2) Exactly \(\scriptsize N\)N comparisons with value using operator==.
  
   3,4) Exactly \(\scriptsize N\)N applications of the predicate p.
Exceptions¶
 The overloads with a template parameter named ExecutionPolicy
    report errors as
  
   follows:
  
   * If execution of a function invoked as part of the algorithm throws an
    exception
  
   and ExecutionPolicy is one of the standard policies, std::terminate is
    called.
  
   For any other ExecutionPolicy, the behavior is implementation-defined.
  
   * If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Notes¶
 For the number of elements in the range [first, last) without any
    additional
  
   criteria, see std::distance.
  
   Feature-test macro Value Std Feature
  
   __cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for
  
   algorithms (1,2)
Possible implementation¶
See also the implementations of count in libstdc++ and libc++.
  
   See also the implementations of count_if in libstdc++ and libc++.
  
   count
  
   template<class InputIt, class T = typename
    std::iterator_traits<InputIt>::value_type>
  
   typename std::iterator_traits<InputIt>::difference_type
  
   count(InputIt first, InputIt last, const T& value)
  
   {
  
   typename std::iterator_traits<InputIt>::difference_type ret = 0;
  
   for (; first != last; ++first)
  
   if (*first == value)
  
   ++ret;
  
   return ret;
  
   }
  
   count_if
  
   template<class InputIt, class UnaryPred>
  
   typename std::iterator_traits<InputIt>::difference_type
  
   count_if(InputIt first, InputIt last, UnaryPred p)
  
   {
  
   typename std::iterator_traits<InputIt>::difference_type ret = 0;
  
   for (; first != last; ++first)
  
   if (p(*first))
  
   ++ret;
  
   return ret;
  
   }
Example¶
// Run this code
  
   #include <algorithm>
  
   #include <array>
  
   #include <cassert>
  
   #include <complex>
  
   #include <iostream>
  
   #include <iterator>
  
   int main()
  
   {
  
   constexpr std::array v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10};
  
   std::cout << "v: ";
  
   std::copy(v.cbegin(), v.cend(), std::ostream_iterator<int>(std::cout,
    " "));
  
   std::cout << '\n';
  
   // Determine how many integers match a target value.
  
   for (const int target : {3, 4, 5})
  
   {
  
   const int num_items = std::count(v.cbegin(), v.cend(), target);
  
   std::cout << "number: " << target << ",
    count: " << num_items << '\n';
  
   }
  
   // Use a lambda expression to count elements divisible by 4.
  
   int count_div4 = std::count_if(v.begin(), v.end(), [](int i) { return i % 4
    == 0; });
  
   std::cout << "numbers divisible by four: " <<
    count_div4 << '\n';
  
   // A simplified version of `distance` with O(N) complexity:
  
   auto distance = [](auto first, auto last)
  
   {
  
   return std::count_if(first, last, [](auto) { return true; });
  
   };
  
   static_assert(distance(v.begin(), v.end()) == 10);
  
   std::array<std::complex<double>, 3> nums{{{4, 2}, {1, 3}, {4,
    2}}};
  
   #ifdef __cpp_lib_algorithm_default_value_type
  
   // T gets deduced making list-initialization possible
  
   auto c = std::count(nums.cbegin(), nums.cend(), {4, 2});
  
   #else
  
   auto c = std::count(nums.cbegin(), nums.cend(), std::complex<double>{4,
    2});
  
   #endif
  
   assert(c == 2);
  
   }
Output:¶
 v: 1 2 3 4 4 3 7 8 9 10
  
   number: 3, count: 2
  
   number: 4, count: 2
  
   number: 5, count: 0
  
   numbers divisible by four: 3
  
   Defect reports
  
   The following behavior-changing defect reports were applied retroactively to
  
   previously published C++ standards.
  
   DR Applied to Behavior as published Correct behavior
  
   T was required to be EqualityComparable,
  
   LWG 283 C++98 but removed the requirement
  
   the value type of InputIt is not always T
See also¶
 distance returns the distance between two iterators
  
   (function template)
  
   ranges::count
  
   ranges::count_if returns the number of elements satisfying specific criteria
  
   (C++20) (niebloid)
  
   (C++20)
| 2024.06.10 | http://cppreference.com |