table of contents
std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l(3) | C++ Standard Libary | std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l(3) |
NAME¶
std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l - std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l
Synopsis¶
double comp_ellint_1( double arg );
double comp_ellint_1( float arg );
double comp_ellint_1( long double arg ); (1)
float comp_ellint_1f( float arg );
long double comp_ellint_1l( long double arg );
double comp_ellint_1( IntegralType arg ); (2)
1) Computes the complete elliptic integral of the first kind of arg.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, comp_ellint_1 is only guaranteed to be available in
<cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation
to a value at
least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.
Parameters¶
arg - value of a floating-point or integral type
Return value¶
If no errors occur, value of the complete elliptic integral of
the first kind of
arg, that is ellint_1(arg, π/2), is returned.
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* If |arg| > 1, a domain error may occur.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
Example¶
(works as shown with gcc 6.0)
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
int main()
{
double hpi = std::acos(-1) / 2;
std::cout << "K(0) = " << std::comp_ellint_1(0)
<< '\n'
<< "π/2 = " << hpi << '\n'
<< "K(0.5) = " << std::comp_ellint_1(0.5) << '\n'
<< "F(0.5, π/2) = " << std::ellint_1(0.5, hpi)
<< '\n';
}
Output:¶
K(0) = 1.5708
π/2 = 1.5708
K(0.5) = 1.68575
F(0.5, π/2) = 1.68575
External links¶
Weisstein, Eric W. "Complete Elliptic Integral of the First
Kind." From MathWorld--A
Wolfram Web Resource.
See also¶
ellint_1 (incomplete) elliptic integral of the first kind
ellint_1f (function)
ellint_1l
2024.06.10 | http://cppreference.com |