table of contents
std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel(3) | C++ Standard Libary | std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel(3) |
NAME¶
std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel - std::assoc_laguerre,std::assoc_laguerref,std::assoc_laguerrel
Synopsis¶
double assoc_laguerre ( unsigned int n, unsigned int m, double x );
double assoc_laguerre ( unsigned int n, unsigned int m, float x );
double assoc_laguerre ( unsigned int n, unsigned int m, long double x );
(1)
float assoc_laguerref( unsigned int n, unsigned int m, float x );
long double assoc_laguerrel( unsigned int n, unsigned int m, long double x );
double assoc_laguerre ( unsigned int n, unsigned int m, IntegralType x );
(2)
1) Computes the associated Laguerre polynomials of the degree n, order m, and
argument x.
2) A set of overloads or a function template accepting an argument of any
integral
type. Equivalent to (1) after casting the argument to double.
As all special functions, assoc_laguerre is only guaranteed to be available
in
<cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation
to a value at
least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.
Parameters¶
n - the degree of the polynomial, a value of unsigned integer
type
m - the order of the polynomial, a value of unsigned integer type
x - the argument, a value of a floating-point or integral type
Return value¶
If no errors occur, value of the associated Laguerre polynomial of x, that is (-1)m
dm
dxm
L
n + m(x), is returned (where L
n + m(x) is the unassociated Laguerre polynomial, std::laguerre(n + m,
x)).
Error handling¶
Errors may be reported as specified in math_errhandling.
* If the argument is NaN, NaN is returned and domain error is not reported.
* If x is negative, a domain error may occur.
* If n or m is greater or equal to 128, the behavior is
implementation-defined.
Notes¶
Implementations that do not support TR 29124 but support TR
19768, provide this
function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
The associated Laguerre polynomials are the polynomial solutions of the
equation
xy,,
+ (m + 1 - x)y,
+ ny = 0.
The first few are:
* assoc_laguerre(0, m, x) = 1.
* assoc_laguerre(1, m, x) = -x + m + 1.
* assoc_laguerre(2, m, x) =
1
2
[x2
- 2(m + 2)x + (m + 1)(m + 2)].
* assoc_laguerre(3, m, x) =
1
6
[-x3
- 3(m + 3)x2
- 3(m + 2)(m + 3)x + (m + 1)(m + 2)(m + 3)].
Example¶
// Run this code
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double L1(unsigned m, double x)
{
return -x + m + 1;
}
double L2(unsigned m, double x)
{
return 0.5 * (x * x - 2 * (m + 2) * x + (m + 1) * (m + 2));
}
int main()
{
// spot-checks
std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' <<
L1(10, 0.5) << '\n'
<< std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5)
<< '\n';
}
Output:¶
10.5=10.5
60.125=60.125
See also¶
laguerre Laguerre polynomials
laguerref (function)
laguerrel
External links¶
Weisstein, Eric W. "Associated Laguerre Polynomial."
From MathWorld — A Wolfram Web
Resource.
2024.06.10 | http://cppreference.com |