table of contents
PPL_PIPS(1) | User Commands | PPL_PIPS(1) |
NAME¶
ppl_pips - a PPL-based parametric integer programming problem solver
SYNOPSIS¶
ppl_pips [OPTION]... [FILE]
DESCRIPTION¶
Reads the definition of a Parametric Integer Programming problem and displays the lexicographic minimum in terms of the values of the parameters.
OPTIONS¶
- -RMB, --max-memory=MB
- limits memory usage to MB megabytes
- -h, --help
- prints this help text to stdout
- -oPATH, --output=PATH
- appends output to PATH
- -P, --polylib
- reads problem in PolyLib format (default)
- -p, --piplib
- reads problem in PipLib format
- -t, --timings
- prints timings to stderr
- -v, --verbose
- produces lots of output
- -i, --iterations=N
- executes the resolution N times (default=1)
- -V, --version
- prints version information to stdout
- -cPATH, --check=PATH
- checks if the result is equal to what is in PATH
Cut generation options:¶
- -f, --cut-first
- uses the first non-integer row (default)
- -d, --cut-deepest
- tries to generate the deepest cut
- -a, --cut-all
- always generates all possible cuts
Pivot row strategy options:¶
- -F, --row-first
- uses the first row with negative parameter (default)
- -M, --row-max
- chooses row generating the lexico-maximal pivot column
AVAILABILITY¶
The latest version of the Parma Polyhedra Library and all the documentation is available at http://bugseng.com/products/ppl/ .
NOTES¶
The options -CSECS (--max-cpu=SECS) and -t (--timings) are not available on some platforms.
The PolyLib format is as follows:
- -
- The first row describes the context matrix (i.e., constraints on the parameters). The first value is the number of rows (which can be zero) and the second value is the number of columns. The number of parameters is the number of columns minus 2.
- -
- Starting from the second row, there are the rows of the context matrix, if any. Each row, which represents a constraint of the form c1*p1 + ... + cn*pn + c0 =/>= 0 , contains: the value 0 if the constraint is an equality, 1 if it is an inequality; the coefficients of the parameters c1, ..., cn ; the constant term c0 . For example, the inequality constraint on two parameters p1 + 2*p2 - 1 >= 0 is encoded by the row 1 1 2 -1 .
- -
- The following row contains the parameter number for the so-called big parameter. If no big parameter is used, the value is -1.
- -
- The following rows encode the problem inequality matrix. As for the
context matrix, the first two values are the dimensions of the matrix. The
number of variables is the number of columns in the matrix minus the
number of parameters minus 2. Each row, which represents a constraint of
the form d1*v1 + ... + dm*vm + c1*p1 + ... + cn*pn + c0 =/>= 0 ,
contains: the value 0 if the constraint is an equality, 1 if it is an
inequality; the coefficients of the variables d1, ..., dm ; the
coefficients of the parameters c1, ..., cn ; the constant term
c0 .
The PipLib format is described in Section 2.2 of PIP/PipLib: A Solver for Parametric Integer Programming Problems (see below).
AUTHOR¶
See the file CREDITS in the source distribution or use the command ppl-config --credits for a list of contributors.
REPORTING BUGS¶
Report bugs to <ppl-devel@cs.unipr.it>.
COPYRIGHT¶
Copyright (C) 2001-2010 Roberto Bagnara
<bagnara@cs.unipr.it> Copyright (C) 2010-2016 BUGSENG srl
(http://bugseng.com)
This is free software; see the file COPYING in the source distribution
or use the command ppl-config --copying to obtain the copying
conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
SEE ALSO¶
Paul Feautrier. Parametric Integer Programming. RAIRO Recherche Operationnelle, 22(3):243-268, 1988.
Paul Feautrier, Jean-Francois Collard, and Cedric Bastoul. PIP/PipLib: A Solver for Parametric Integer Programming Problems, 5.0 edition, July 2007. Distributed with PIP/PipLib 1.4.0.
February 2016 | ppl_pips 1.2 |