table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zunbdb.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zunbdb.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zunbdb.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZUNBDB (trans, signs, m, p, q, x11, ldx11, x12,
ldx12, x21, ldx21, x22, ldx22, theta, phi, taup1, taup2, tauq1, tauq2, work,
lwork, info)
ZUNBDB
Function/Subroutine Documentation¶
subroutine ZUNBDB (character trans, character signs, integer m, integer p, integer q, complex*16, dimension( ldx11, * ) x11, integer ldx11, complex*16, dimension( ldx12, * ) x12, integer ldx12, complex*16, dimension( ldx21, * ) x21, integer ldx21, complex*16, dimension( ldx22, * ) x22, integer ldx22, double precision, dimension( * ) theta, double precision, dimension( * ) phi, complex*16, dimension( * ) taup1, complex*16, dimension( * ) taup2, complex*16, dimension( * ) tauq1, complex*16, dimension( * ) tauq2, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZUNBDB
Purpose:
!> !> ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M !> partitioned unitary matrix X: !> !> [ B11 | B12 0 0 ] !> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H !> X = [-----------] = [---------] [----------------] [---------] . !> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] !> [ 0 | 0 0 I ] !> !> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is !> not the case, then X must be transposed and/or permuted. This can be !> done in constant time using the TRANS and SIGNS options. See ZUNCSD !> for details.) !> !> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- !> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are !> represented implicitly by Householder vectors. !> !> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented !> implicitly by angles THETA, PHI. !>
Parameters
TRANS
!> TRANS is CHARACTER !> = 'T': X, U1, U2, V1T, and V2T are stored in row-major !> order; !> otherwise: X, U1, U2, V1T, and V2T are stored in column- !> major order. !>
SIGNS
!> SIGNS is CHARACTER !> = 'O': The lower-left block is made nonpositive (the !> convention); !> otherwise: The upper-right block is made nonpositive (the !> convention). !>
M
!> M is INTEGER !> The number of rows and columns in X. !>
P
!> P is INTEGER !> The number of rows in X11 and X12. 0 <= P <= M. !>
Q
!> Q is INTEGER !> The number of columns in X11 and X21. 0 <= Q <= !> MIN(P,M-P,M-Q). !>
X11
!> X11 is COMPLEX*16 array, dimension (LDX11,Q) !> On entry, the top-left block of the unitary matrix to be !> reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the columns of tril(X11) specify reflectors for P1, !> the rows of triu(X11,1) specify reflectors for Q1; !> else TRANS = 'T', and !> the rows of triu(X11) specify reflectors for P1, !> the columns of tril(X11,-1) specify reflectors for Q1. !>
LDX11
!> LDX11 is INTEGER !> The leading dimension of X11. If TRANS = 'N', then LDX11 >= !> P; else LDX11 >= Q. !>
X12
!> X12 is COMPLEX*16 array, dimension (LDX12,M-Q) !> On entry, the top-right block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the rows of triu(X12) specify the first P reflectors for !> Q2; !> else TRANS = 'T', and !> the columns of tril(X12) specify the first P reflectors !> for Q2. !>
LDX12
!> LDX12 is INTEGER !> The leading dimension of X12. If TRANS = 'N', then LDX12 >= !> P; else LDX11 >= M-Q. !>
X21
!> X21 is COMPLEX*16 array, dimension (LDX21,Q) !> On entry, the bottom-left block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the columns of tril(X21) specify reflectors for P2; !> else TRANS = 'T', and !> the rows of triu(X21) specify reflectors for P2. !>
LDX21
!> LDX21 is INTEGER !> The leading dimension of X21. If TRANS = 'N', then LDX21 >= !> M-P; else LDX21 >= Q. !>
X22
!> X22 is COMPLEX*16 array, dimension (LDX22,M-Q) !> On entry, the bottom-right block of the unitary matrix to !> be reduced. On exit, the form depends on TRANS: !> If TRANS = 'N', then !> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last !> M-P-Q reflectors for Q2, !> else TRANS = 'T', and !> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last !> M-P-Q reflectors for P2. !>
LDX22
!> LDX22 is INTEGER !> The leading dimension of X22. If TRANS = 'N', then LDX22 >= !> M-P; else LDX22 >= M-Q. !>
THETA
!> THETA is DOUBLE PRECISION array, dimension (Q) !> The entries of the bidiagonal blocks B11, B12, B21, B22 can !> be computed from the angles THETA and PHI. See Further !> Details. !>
PHI
!> PHI is DOUBLE PRECISION array, dimension (Q-1) !> The entries of the bidiagonal blocks B11, B12, B21, B22 can !> be computed from the angles THETA and PHI. See Further !> Details. !>
TAUP1
!> TAUP1 is COMPLEX*16 array, dimension (P) !> The scalar factors of the elementary reflectors that define !> P1. !>
TAUP2
!> TAUP2 is COMPLEX*16 array, dimension (M-P) !> The scalar factors of the elementary reflectors that define !> P2. !>
TAUQ1
!> TAUQ1 is COMPLEX*16 array, dimension (Q) !> The scalar factors of the elementary reflectors that define !> Q1. !>
TAUQ2
!> TAUQ2 is COMPLEX*16 array, dimension (M-Q) !> The scalar factors of the elementary reflectors that define !> Q2. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= M-Q. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The bidiagonal blocks B11, B12, B21, and B22 are represented !> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., !> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are !> lower bidiagonal. Every entry in each bidiagonal band is a product !> of a sine or cosine of a THETA with a sine or cosine of a PHI. See !> [1] or ZUNCSD for details. !> !> P1, P2, Q1, and Q2 are represented as products of elementary !> reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2 !> using ZUNGQR and ZUNGLQ. !>
References:
[1] Brian D. Sutton. Computing the complete CS
decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Definition at line 284 of file zunbdb.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |