table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt02.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt02.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt02.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZQLT02 (m, n, k, a, af, q, l, lda, tau, work,
lwork, rwork, result)
ZQLT02
Function/Subroutine Documentation¶
subroutine ZQLT02 (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) l, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)¶
ZQLT02
Purpose:
!> !> ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with !> orthonormal columns that is defined as the product of k elementary !> reflectors. !> !> Given the QL factorization of an m-by-n matrix A, ZQLT02 generates !> the orthogonal matrix Q defined by the factorization of the last k !> columns of A; it compares L(m-n+1:m,n-k+1:n) with !> Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are !> orthonormal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix Q to be generated. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix Q to be generated. !> M >= N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q. N >= K >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A which was factorized by ZQLT01. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QL factorization of A, as returned by ZGEQLF. !> See ZGEQLF for further details. !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,N) !>
L
!> L is COMPLEX*16 array, dimension (LDA,N) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L. LDA >= M. !>
TAU
!> TAU is COMPLEX*16 array, dimension (N) !> The scalar factors of the elementary reflectors corresponding !> to the QL factorization in AF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 134 of file zqlt02.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |