table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zptrfs.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zptrfs.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zptrfs.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZPTRFS (uplo, n, nrhs, d, e, df, ef, b, ldb, x,
ldx, ferr, berr, work, rwork, info)
ZPTRFS
Function/Subroutine Documentation¶
subroutine ZPTRFS (character uplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, double precision, dimension( * ) df, complex*16, dimension( * ) ef, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZPTRFS
Purpose:
!> !> ZPTRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is Hermitian positive definite !> and tridiagonal, and provides error bounds and backward error !> estimates for the solution. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the superdiagonal or the subdiagonal of the !> tridiagonal matrix A is stored and the form of the !> factorization: !> = 'U': E is the superdiagonal of A, and A = U**H*D*U; !> = 'L': E is the subdiagonal of A, and A = L*D*L**H. !> (The two forms are equivalent if A is real.) !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n real diagonal elements of the tridiagonal matrix A. !>
E
!> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) off-diagonal elements of the tridiagonal matrix A !> (see UPLO). !>
DF
!> DF is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D from !> the factorization computed by ZPTTRF. !>
EF
!> EF is COMPLEX*16 array, dimension (N-1) !> The (n-1) off-diagonal elements of the unit bidiagonal !> factor U or L from the factorization computed by ZPTTRF !> (see UPLO). !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZPTTRS. !> On exit, the improved solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). !>
BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Internal Parameters:
!> ITMAX is the maximum number of steps of iterative refinement. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 181 of file zptrfs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |