Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zppt01.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zppt01.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zppt01.f

SYNOPSIS

Functions/Subroutines


subroutine ZPPT01 (uplo, n, a, afac, rwork, resid)
ZPPT01

Function/Subroutine Documentation

subroutine ZPPT01 (character uplo, integer n, complex*16, dimension( * ) a, complex*16, dimension( * ) afac, double precision, dimension( * ) rwork, double precision resid)

ZPPT01

Purpose:

!>
!> ZPPT01 reconstructs a Hermitian positive definite packed matrix A
!> from its L*L' or U'*U factorization and computes the residual
!>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
!>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
!> where EPS is the machine epsilon, L' is the conjugate transpose of
!> L, and U' is the conjugate transpose of U.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The number of rows and columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          The original Hermitian matrix A, stored as a packed
!>          triangular matrix.
!> 

AFAC

!>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          On entry, the factor L or U from the L*L' or U'*U
!>          factorization of A, stored as a packed triangular matrix.
!>          Overwritten with the reconstructed matrix, and then with the
!>          difference L*L' - A (or U'*U - A).
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

RESID

!>          RESID is DOUBLE PRECISION
!>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
!>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 94 of file zppt01.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK