table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zpot03.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zpot03.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zpot03.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZPOT03 (uplo, n, a, lda, ainv, ldainv, work,
ldwork, rwork, rcond, resid)
ZPOT03
Function/Subroutine Documentation¶
subroutine ZPOT03 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldainv, * ) ainv, integer ldainv, complex*16, dimension( ldwork, * ) work, integer ldwork, double precision, dimension( * ) rwork, double precision rcond, double precision resid)¶
ZPOT03
Purpose:
!> !> ZPOT03 computes the residual for a Hermitian matrix times its !> inverse: !> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), !> where EPS is the machine epsilon. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !>
N
!> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The original Hermitian matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !>
AINV
!> AINV is COMPLEX*16 array, dimension (LDAINV,N) !> On entry, the inverse of the matrix A, stored as a Hermitian !> matrix in the same format as A. !> In this version, AINV is expanded into a full matrix and !> multiplied by A, so the opposing triangle of AINV will be !> changed; i.e., if the upper triangular part of AINV is !> stored, the lower triangular part will be used as work space. !>
LDAINV
!> LDAINV is INTEGER !> The leading dimension of the array AINV. LDAINV >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (LDWORK,N) !>
LDWORK
!> LDWORK is INTEGER !> The leading dimension of the array WORK. LDWORK >= max(1,N). !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
RCOND
!> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of A, computed as !> ( 1/norm(A) ) / norm(AINV). !>
RESID
!> RESID is DOUBLE PRECISION !> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file zpot03.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |