table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zpftrf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zpftrf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zpftrf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZPFTRF (transr, uplo, n, a, info)
ZPFTRF
Function/Subroutine Documentation¶
subroutine ZPFTRF (character transr, character uplo, integer n, complex*16, dimension( 0: * ) a, integer info)¶
ZPFTRF
Purpose:
!> !> ZPFTRF computes the Cholesky factorization of a complex Hermitian !> positive definite matrix A. !> !> The factorization has the form !> A = U**H * U, if UPLO = 'U', or !> A = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular. !> !> This is the block version of the algorithm, calling Level 3 BLAS. !>
Parameters
TRANSR
!> TRANSR is CHARACTER*1 !> = 'N': The Normal TRANSR of RFP A is stored; !> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of RFP A is stored; !> = 'L': Lower triangle of RFP A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); !> On entry, the Hermitian matrix A in RFP format. RFP format is !> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' !> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is !> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is !> the Conjugate-transpose of RFP A as defined when !> TRANSR = 'N'. The contents of RFP A are defined by UPLO as !> follows: If UPLO = 'U' the RFP A contains the nt elements of !> upper packed A. If UPLO = 'L' the RFP A contains the elements !> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = !> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N !> is odd. See the Note below for more details. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization RFP A = U**H*U or RFP A = L*L**H. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the leading principal minor of order i !> is not positive, and the factorization could not be !> completed. !> !> Further Notes on RFP Format: !> ============================ !> !> We first consider Standard Packed Format when N is even. !> We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> conjugate-transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> conjugate-transpose of the last three columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- -- !> 03 04 05 33 43 53 !> -- -- !> 13 14 15 00 44 54 !> -- !> 23 24 25 10 11 55 !> !> 33 34 35 20 21 22 !> -- !> 00 44 45 30 31 32 !> -- -- !> 01 11 55 40 41 42 !> -- -- -- !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- -- !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- -- !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> We next consider Standard Packed Format when N is odd. !> We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> conjugate-transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> conjugate-transpose of the last two columns of AP lower. !> To denote conjugate we place -- above the element. This covers the !> case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> -- -- !> 02 03 04 00 33 43 !> -- !> 12 13 14 10 11 44 !> !> 22 23 24 20 21 22 !> -- !> 00 33 34 30 31 32 !> -- -- !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- !> transpose of RFP A above. One therefore gets: !> !> RFP A RFP A !> !> -- -- -- -- -- -- -- -- -- !> 02 12 22 00 01 00 10 20 30 40 50 !> -- -- -- -- -- -- -- -- -- !> 03 13 23 33 11 33 11 21 31 41 51 !> -- -- -- -- -- -- -- -- -- !> 04 14 24 34 44 43 44 22 32 42 52 !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 210 of file zpftrf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |