table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaswlq.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaswlq.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlaswlq.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZLASWLQ (m, n, mb, nb, a, lda, t, ldt, work,
lwork, info)
ZLASWLQ
Function/Subroutine Documentation¶
subroutine ZLASWLQ (integer m, integer n, integer mb, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, *) t, integer ldt, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZLASWLQ
Purpose:
!> !> ZLASWLQ computes a blocked Tall-Skinny LQ factorization of !> a complexx M-by-N matrix A for M <= N: !> !> A = ( L 0 ) * Q, !> !> where: !> !> Q is a n-by-N orthogonal matrix, stored on exit in an implicit !> form in the elements above the diagonal of the array A and in !> the elements of the array T; !> L is a lower-triangular M-by-M matrix stored on exit in !> the elements on and below the diagonal of the array A. !> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored. !> !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= M >= 0. !>
MB
!> MB is INTEGER !> The row block size to be used in the blocked QR. !> M >= MB >= 1 !>
NB
!> NB is INTEGER !> The column block size to be used in the blocked QR. !> NB > 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the elements on and below the diagonal !> of the array contain the N-by-N lower triangular matrix L; !> the elements above the diagonal represent Q by the rows !> of blocked V (see Further Details). !> !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is COMPLEX*16 array, !> dimension (LDT, N * Number_of_row_blocks) !> where Number_of_row_blocks = CEIL((N-M)/(NB-M)) !> The blocked upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. !> See Further Details below. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= MB. !>
WORK
!> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= MB*M. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, !> representing Q as a product of other orthogonal matrices !> Q = Q(1) * Q(2) * . . . * Q(k) !> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A: !> Q(1) zeros out the upper diagonal entries of rows 1:NB of A !> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A !> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A !> . . . !> !> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors !> stored under the diagonal of rows 1:MB of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,1:N). !> For more information see Further Details in GELQT. !> !> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors !> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M). !> The last Q(k) may use fewer rows. !> For more information see Further Details in TPQRT. !> !> For more details of the overall algorithm, see the description of !> Sequential TSQR in Section 2.2 of [1]. !> !> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” !> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, !> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 !>
Definition at line 165 of file zlaswlq.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |