table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlamtsqr.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlamtsqr.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlamtsqr.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZLAMTSQR (side, trans, m, n, k, mb, nb, a, lda,
t, ldt, c, ldc, work, lwork, info)
ZLAMTSQR
Function/Subroutine Documentation¶
subroutine ZLAMTSQR (character side, character trans, integer m, integer n, integer k, integer mb, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension(ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZLAMTSQR
Purpose:
!> !> ZLAMTSQR overwrites the general complex M-by-N matrix C with !> !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> where Q is a complex unitary matrix defined as the product !> of blocked elementary reflectors computed by tall skinny !> QR factorization (ZLATSQR) !>
Parameters
SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate Transpose, apply Q**H. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >=0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. M >= K >= 0; !> !>
MB
!> MB is INTEGER !> The block size to be used in the blocked QR. !> MB > N. (must be the same as ZLATSQR) !>
NB
!> NB is INTEGER !> The column block size to be used in the blocked QR. !> N >= NB >= 1. !>
A
!> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> blockedelementary reflector H(i), for i = 1,2,...,k, as !> returned by ZLATSQR in the first k columns of !> its array argument A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
T
!> T is COMPLEX*16 array, dimension !> ( N * Number of blocks(CEIL(M-K/MB-K)), !> The blocked upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See below !> for further details. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> !> If SIDE = 'L', LWORK >= max(1,N)*NB; !> if SIDE = 'R', LWORK >= max(1,MB)*NB. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> Tall-Skinny QR (TSQR) performs QR by a sequence of unitary transformations, !> representing Q as a product of other unitary matrices !> Q = Q(1) * Q(2) * . . . * Q(k) !> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: !> Q(1) zeros out the subdiagonal entries of rows 1:MB of A !> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A !> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A !> . . . !> !> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors !> stored under the diagonal of rows 1:MB of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,1:N). !> For more information see Further Details in GEQRT. !> !> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors !> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). !> The last Q(k) may use fewer rows. !> For more information see Further Details in TPQRT. !> !> For more details of the overall algorithm, see the description of !> Sequential TSQR in Section 2.2 of [1]. !> !> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” !> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, !> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 !>
Definition at line 197 of file zlamtsqr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |