Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlagtm.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlagtm.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlagtm.f

SYNOPSIS

Functions/Subroutines


subroutine ZLAGTM (trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.

Function/Subroutine Documentation

subroutine ZLAGTM (character trans, integer n, integer nrhs, double precision alpha, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( ldx, * ) x, integer ldx, double precision beta, complex*16, dimension( ldb, * ) b, integer ldb)

ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.

Purpose:

!>
!> ZLAGTM performs a matrix-matrix product of the form
!>
!>    B := alpha * A * X + beta * B
!>
!> where A is a tridiagonal matrix of order N, B and X are N by NRHS
!> matrices, and alpha and beta are real scalars, each of which may be
!> 0., 1., or -1.
!> 

Parameters

TRANS

!>          TRANS is CHARACTER*1
!>          Specifies the operation applied to A.
!>          = 'N':  No transpose, B := alpha * A * X + beta * B
!>          = 'T':  Transpose,    B := alpha * A**T * X + beta * B
!>          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices X and B.
!> 

ALPHA

!>          ALPHA is DOUBLE PRECISION
!>          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
!>          it is assumed to be 0.
!> 

DL

!>          DL is COMPLEX*16 array, dimension (N-1)
!>          The (n-1) sub-diagonal elements of T.
!> 

D

!>          D is COMPLEX*16 array, dimension (N)
!>          The diagonal elements of T.
!> 

DU

!>          DU is COMPLEX*16 array, dimension (N-1)
!>          The (n-1) super-diagonal elements of T.
!> 

X

!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>          The N by NRHS matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(N,1).
!> 

BETA

!>          BETA is DOUBLE PRECISION
!>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
!>          it is assumed to be 1.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N by NRHS matrix B.
!>          On exit, B is overwritten by the matrix expression
!>          B := alpha * A * X + beta * B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(N,1).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 143 of file zlagtm.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK