Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlacon.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlacon.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zlacon.f

SYNOPSIS

Functions/Subroutines


subroutine ZLACON (n, v, x, est, kase)
ZLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

Function/Subroutine Documentation

subroutine ZLACON (integer n, complex*16, dimension( n ) v, complex*16, dimension( n ) x, double precision est, integer kase)

ZLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

Purpose:

!>
!> ZLACON estimates the 1-norm of a square, complex matrix A.
!> Reverse communication is used for evaluating matrix-vector products.
!> 

Parameters

N

!>          N is INTEGER
!>         The order of the matrix.  N >= 1.
!> 

V

!>          V is COMPLEX*16 array, dimension (N)
!>         On the final return, V = A*W,  where  EST = norm(V)/norm(W)
!>         (W is not returned).
!> 

X

!>          X is COMPLEX*16 array, dimension (N)
!>         On an intermediate return, X should be overwritten by
!>               A * X,   if KASE=1,
!>               A**H * X,  if KASE=2,
!>         where A**H is the conjugate transpose of A, and ZLACON must be
!>         re-called with all the other parameters unchanged.
!> 

EST

!>          EST is DOUBLE PRECISION
!>         On entry with KASE = 1 or 2 and JUMP = 3, EST should be
!>         unchanged from the previous call to ZLACON.
!>         On exit, EST is an estimate (a lower bound) for norm(A).
!> 

KASE

!>          KASE is INTEGER
!>         On the initial call to ZLACON, KASE should be 0.
!>         On an intermediate return, KASE will be 1 or 2, indicating
!>         whether X should be overwritten by A * X  or A**H * X.
!>         On the final return from ZLACON, KASE will again be 0.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

Originally named CONEST, dated March 16, 1988.
Last modified: April, 1999

Contributors:

Nick Higham, University of Manchester

References:

N.J. Higham, 'FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation', ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.

Definition at line 113 of file zlacon.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK