table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhegv.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhegv.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhegv.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZHEGV (itype, jobz, uplo, n, a, lda, b, ldb, w,
work, lwork, rwork, info)
ZHEGV
Function/Subroutine Documentation¶
subroutine ZHEGV (integer itype, character jobz, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) w, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)¶
ZHEGV
Purpose:
!> !> ZHEGV computes all the eigenvalues, and optionally, the eigenvectors !> of a complex generalized Hermitian-definite eigenproblem, of the form !> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. !> Here A and B are assumed to be Hermitian and B is also !> positive definite. !>
Parameters
ITYPE
!> ITYPE is INTEGER !> Specifies the problem type to be solved: !> = 1: A*x = (lambda)*B*x !> = 2: A*B*x = (lambda)*x !> = 3: B*A*x = (lambda)*x !>
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the Hermitian matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A. !> !> On exit, if JOBZ = 'V', then if INFO = 0, A contains the !> matrix Z of eigenvectors. The eigenvectors are normalized !> as follows: !> if ITYPE = 1 or 2, Z**H*B*Z = I; !> if ITYPE = 3, Z**H*inv(B)*Z = I. !> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') !> or the lower triangle (if UPLO='L') of A, including the !> diagonal, is destroyed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is COMPLEX*16 array, dimension (LDB, N) !> On entry, the Hermitian positive definite matrix B. !> If UPLO = 'U', the leading N-by-N upper triangular part of B !> contains the upper triangular part of the matrix B. !> If UPLO = 'L', the leading N-by-N lower triangular part of B !> contains the lower triangular part of the matrix B. !> !> On exit, if INFO <= N, the part of B containing the matrix is !> overwritten by the triangular factor U or L from the Cholesky !> factorization B = U**H*U or B = L*L**H. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= max(1,2*N-1). !> For optimal efficiency, LWORK >= (NB+1)*N, !> where NB is the blocksize for ZHETRD returned by ILAENV. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: ZPOTRF or ZHEEV returned an error code: !> <= N: if INFO = i, ZHEEV failed to converge; !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then the leading !> principal minor of order i of B is not positive. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 179 of file zhegv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |