table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhbevx_2stage.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhbevx_2stage.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zhbevx_2stage.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZHBEVX_2STAGE (jobz, range, uplo, n, kd, ab,
ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)
ZHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for OTHER matrices
Function/Subroutine Documentation¶
subroutine ZHBEVX_2STAGE (character jobz, character range, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldq, * ) q, integer ldq, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)¶
ZHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> ZHBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors !> of a complex Hermitian band matrix A using the 2stage technique for !> the reduction to tridiagonal. Eigenvalues and eigenvectors !> can be selected by specifying either a range of values or a range of !> indices for the desired eigenvalues. !>
Parameters
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
RANGE
!> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found; !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found; !> = 'I': the IL-th through IU-th eigenvalues will be found. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !>
AB
!> AB is COMPLEX*16 array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD + 1. !>
Q
!> Q is COMPLEX*16 array, dimension (LDQ, N) !> If JOBZ = 'V', the N-by-N unitary matrix used in the !> reduction to tridiagonal form. !> If JOBZ = 'N', the array Q is not referenced. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. If JOBZ = 'V', then !> LDQ >= max(1,N). !>
VL
!> VL is DOUBLE PRECISION !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
VU
!> VU is DOUBLE PRECISION !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
IL
!> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
IU
!> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
ABSTOL
!> ABSTOL is DOUBLE PRECISION !> The absolute error tolerance for the eigenvalues. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing AB to tridiagonal form. !> !> Eigenvalues will be computed most accurately when ABSTOL is !> set to twice the underflow threshold 2*DLAMCH('S'), not zero. !> If this routine returns with INFO>0, indicating that some !> eigenvectors did not converge, try setting ABSTOL to !> 2*DLAMCH('S'). !> !> See by Demmel and !> Kahan, LAPACK Working Note #3. !>
M
!> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !>
Z
!> Z is COMPLEX*16 array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If an eigenvector fails to converge, then that column of Z !> contains the latest approximation to the eigenvector, and the !> index of the eigenvector is returned in IFAIL. !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS !> where KD is the size of the band. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (7*N) !>
IWORK
!> IWORK is INTEGER array, dimension (5*N) !>
IFAIL
!> IFAIL is INTEGER array, dimension (N) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero. If INFO > 0, then IFAIL contains the !> indices of the eigenvectors that failed to converge. !> If JOBZ = 'N', then IFAIL is not referenced. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, then i eigenvectors failed to converge. !> Their indices are stored in array IFAIL. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 323 of file zhbevx_2stage.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |