table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvsg2stg.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvsg2stg.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrvsg2stg.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZDRVSG2STG (nsizes, nn, ntypes, dotype, iseed,
thresh, nounit, a, lda, b, ldb, d, d2, z, ldz, ab, bb, ap, bp, work, nwork,
rwork, lrwork, iwork, liwork, result, info)
ZDRVSG2STG
Function/Subroutine Documentation¶
subroutine ZDRVSG2STG (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, double precision thresh, integer nounit, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) d, double precision, dimension( * ) d2, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( lda, * ) ab, complex*16, dimension( ldb, * ) bb, complex*16, dimension( * ) ap, complex*16, dimension( * ) bp, complex*16, dimension( * ) work, integer nwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, double precision, dimension( * ) result, integer info)¶
ZDRVSG2STG
Purpose:
!> !> ZDRVSG2STG checks the complex Hermitian generalized eigenproblem !> drivers. !> !> ZHEGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHEGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> ZHEGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> ZHPGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHPGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> ZHPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> ZHBGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> ZHBGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> ZHBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> When ZDRVSG2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) ZHEGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> | D - D2 | / ( |D| ulp ) where D is computed by !> ZHEGV and D2 is computed by !> ZHEGV_2STAGE. This test is !> only performed for DSYGV !> !> (2) as (1) but calling ZHPGV !> (3) as (1) but calling ZHBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling ZHPGV !> (6) as (4) but calling ZHBGV !> !> (7) ZHEGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling ZHPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling ZHPGV !> !> (11) ZHEGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling ZHPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling ZHPGV !> !> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests. !> !> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZDRVSG2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, ZDRVSG2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVSG2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX*16 array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B COMPLEX*16 array, dimension (LDB , max(NN)) !> Used to hold the Hermitian positive definite matrix for !> the generalized problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z COMPLEX*16 array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of ZZ. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB COMPLEX*16 array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB COMPLEX*16 array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP COMPLEX*16 array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK COMPLEX*16 array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 2*N + N**2 where N = max( NN(j), 2 ). !> Not modified. !> !> RWORK DOUBLE PRECISION array, dimension (LRWORK) !> Workspace. !> Modified. !> !> LRWORK INTEGER !> The number of entries in RWORK. This must be at least !> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where !> N = max( NN(j) ) and lg( N ) = smallest integer k such !> that 2**k >= N . !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK)) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in IWORK. This must be at least !> 2 + 5*max( NN(j) ). !> Not modified. !> !> RESULT DOUBLE PRECISION array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LRWORK too small. !> -25: LIWORK too small. !> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, !> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 372 of file zdrvsg2stg.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |