table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrges.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrges.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/zdrges.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZDRGES (nsizes, nn, ntypes, dotype, iseed,
thresh, nounit, a, lda, b, s, t, q, ldq, z, alpha, beta, work, lwork, rwork,
result, bwork, info)
ZDRGES
Function/Subroutine Documentation¶
subroutine ZDRGES (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, double precision thresh, integer nounit, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( lda, * ) b, complex*16, dimension( lda, * ) s, complex*16, dimension( lda, * ) t, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldq, * ) z, complex*16, dimension( * ) alpha, complex*16, dimension( * ) beta, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 13 ) result, logical, dimension( * ) bwork, integer info)¶
ZDRGES
Purpose:
!> !> ZDRGES checks the nonsymmetric generalized eigenvalue (Schur form) !> problem driver ZGGES. !> !> ZGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorder the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms. !> !> When ZDRGES is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each TYPE of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following 13 tests !> will be performed and compared with the threshold THRESH except !> the tests (5), (11) and (13). !> !> !> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues) !> !> !> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues) !> !> !> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues) !> !> !> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues) !> !> (5) if A is in Schur form (i.e. triangular form) (no sorting of !> eigenvalues) !> !> (6) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e., test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (no sorting of eigenvalues) !> !> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp ) !> (with sorting of eigenvalues). !> !> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) if A is in Schur form (i.e. quasi-triangular form) !> (with sorting of eigenvalues). !> !> (11) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e. test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (with sorting of eigenvalues). !> !> (12) if sorting worked and SDIM is the number of eigenvalues !> which were CELECTed. !> !> Test Matrices !> ============= !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
Parameters
NSIZES
!> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> DDRGES does nothing. NSIZES >= 0. !>
NN
!> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !>
NTYPES
!> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, DDRGES !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A on input. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !>
DOTYPE
!> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !>
ISEED
!> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to DDRGES to continue the same random number !> sequence. !>
THRESH
!> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. THRESH >= 0. !>
NOUNIT
!> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !>
A
!> A is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !>
LDA
!> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !>
B
!> B is COMPLEX*16 array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !>
S
!> S is COMPLEX*16 array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by ZGGES. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !>
T
!> T is COMPLEX*16 array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by ZGGES. !>
Q
!> Q is COMPLEX*16 array, dimension (LDQ, max(NN)) !> The (left) orthogonal matrix computed by ZGGES. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !>
Z
!> Z is COMPLEX*16 array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by ZGGES. !>
ALPHA
!> ALPHA is COMPLEX*16 array, dimension (max(NN)) !>
BETA
!> BETA is COMPLEX*16 array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by ZGGES. !> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A !> and B. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*N*N. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension ( 8*N ) !> Real workspace. !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !>
BWORK
!> BWORK is LOGICAL array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 378 of file zdrges.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |