table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssygvx.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssygvx.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssygvx.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SSYGVX (itype, jobz, range, uplo, n, a, lda, b,
ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYGVX
Function/Subroutine Documentation¶
subroutine SSYGVX (integer itype, character jobz, character range, character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)¶
SSYGVX
Purpose:
!> !> SSYGVX computes selected eigenvalues, and optionally, eigenvectors !> of a real generalized symmetric-definite eigenproblem, of the form !> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A !> and B are assumed to be symmetric and B is also positive definite. !> Eigenvalues and eigenvectors can be selected by specifying either a !> range of values or a range of indices for the desired eigenvalues. !>
Parameters
ITYPE
!> ITYPE is INTEGER !> Specifies the problem type to be solved: !> = 1: A*x = (lambda)*B*x !> = 2: A*B*x = (lambda)*x !> = 3: B*A*x = (lambda)*x !>
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
RANGE
!> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A and B are stored; !> = 'L': Lower triangle of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrix pencil (A,B). N >= 0. !>
A
!> A is REAL array, dimension (LDA, N) !> On entry, the symmetric matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A. !> !> On exit, the lower triangle (if UPLO='L') or the upper !> triangle (if UPLO='U') of A, including the diagonal, is !> destroyed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
B
!> B is REAL array, dimension (LDB, N) !> On entry, the symmetric matrix B. If UPLO = 'U', the !> leading N-by-N upper triangular part of B contains the !> upper triangular part of the matrix B. If UPLO = 'L', !> the leading N-by-N lower triangular part of B contains !> the lower triangular part of the matrix B. !> !> On exit, if INFO <= N, the part of B containing the matrix is !> overwritten by the triangular factor U or L from the Cholesky !> factorization B = U**T*U or B = L*L**T. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
VL
!> VL is REAL !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
VU
!> VU is REAL !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
IL
!> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
IU
!> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
ABSTOL
!> ABSTOL is REAL !> The absolute error tolerance for the eigenvalues. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing C to tridiagonal form, where C is the symmetric !> matrix of the standard symmetric problem to which the !> generalized problem is transformed. !> !> Eigenvalues will be computed most accurately when ABSTOL is !> set to twice the underflow threshold 2*DLAMCH('S'), not zero. !> If this routine returns with INFO>0, indicating that some !> eigenvectors did not converge, try setting ABSTOL to !> 2*SLAMCH('S'). !>
M
!> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !>
W
!> W is REAL array, dimension (N) !> On normal exit, the first M elements contain the selected !> eigenvalues in ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, max(1,M)) !> If JOBZ = 'N', then Z is not referenced. !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> The eigenvectors are normalized as follows: !> if ITYPE = 1 or 2, Z**T*B*Z = I; !> if ITYPE = 3, Z**T*inv(B)*Z = I. !> !> If an eigenvector fails to converge, then that column of Z !> contains the latest approximation to the eigenvector, and the !> index of the eigenvector is returned in IFAIL. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= max(1,8*N). !> For optimal efficiency, LWORK >= (NB+3)*N, !> where NB is the blocksize for SSYTRD returned by ILAENV. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (5*N) !>
IFAIL
!> IFAIL is INTEGER array, dimension (N) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero. If INFO > 0, then IFAIL contains the !> indices of the eigenvectors that failed to converge. !> If JOBZ = 'N', then IFAIL is not referenced. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: SPOTRF or SSYEVX returned an error code: !> <= N: if INFO = i, SSYEVX failed to converge; !> i eigenvectors failed to converge. Their indices !> are stored in array IFAIL. !> > N: if INFO = N + i, for 1 <= i <= N, then the leading !> principal minor of order i of B is not positive. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 294 of file ssygvx.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |