table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssyevr_2stage.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssyevr_2stage.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ssyevr_2stage.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SSYEVR_2STAGE (jobz, range, uplo, n, a, lda, vl,
vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for SY matrices
Function/Subroutine Documentation¶
subroutine SSYEVR_2STAGE (character jobz, character range, character uplo, integer n, real, dimension( lda, * ) a, integer lda, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Purpose:
!> !> SSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric matrix A using the 2stage technique for !> the reduction to tridiagonal. Eigenvalues and eigenvectors can be !> selected by specifying either a range of values or a range of !> indices for the desired eigenvalues. !> !> SSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call !> to SSYTRD. Then, whenever possible, SSYEVR_2STAGE calls SSTEMR to compute !> the eigenspectrum using Relatively Robust Representations. SSTEMR !> computes eigenvalues by the dqds algorithm, while orthogonal !> eigenvectors are computed from various L D L^T representations !> (also known as Relatively Robust Representations). Gram-Schmidt !> orthogonalization is avoided as far as possible. More specifically, !> the various steps of the algorithm are as follows. !> !> For each unreduced block (submatrix) of T, !> (a) Compute T - sigma I = L D L^T, so that L and D !> define all the wanted eigenvalues to high relative accuracy. !> This means that small relative changes in the entries of D and L !> cause only small relative changes in the eigenvalues and !> eigenvectors. The standard (unfactored) representation of the !> tridiagonal matrix T does not have this property in general. !> (b) Compute the eigenvalues to suitable accuracy. !> If the eigenvectors are desired, the algorithm attains full !> accuracy of the computed eigenvalues only right before !> the corresponding vectors have to be computed, see steps c) and d). !> (c) For each cluster of close eigenvalues, select a new !> shift close to the cluster, find a new factorization, and refine !> the shifted eigenvalues to suitable accuracy. !> (d) For each eigenvalue with a large enough relative separation compute !> the corresponding eigenvector by forming a rank revealing twisted !> factorization. Go back to (c) for any clusters that remain. !> !> The desired accuracy of the output can be specified by the input !> parameter ABSTOL. !> !> For more details, see SSTEMR's documentation and: !> - Inderjit S. Dhillon and Beresford N. Parlett: !> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. !> - Inderjit Dhillon and Beresford Parlett: SIAM Journal on Matrix Analysis and Applications, Vol. 25, !> 2004. Also LAPACK Working Note 154. !> - Inderjit Dhillon: , !> Computer Science Division Technical Report No. UCB/CSD-97-971, !> UC Berkeley, May 1997. !> !> !> Note 1 : SSYEVR_2STAGE calls SSTEMR when the full spectrum is requested !> on machines which conform to the ieee-754 floating point standard. !> SSYEVR_2STAGE calls SSTEBZ and SSTEIN on non-ieee machines and !> when partial spectrum requests are made. !> !> Normal execution of SSTEMR may create NaNs and infinities and !> hence may abort due to a floating point exception in environments !> which do not handle NaNs and infinities in the ieee standard default !> manner. !>
Parameters
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
RANGE
!> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and !> SSTEIN are called !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA, N) !> On entry, the symmetric matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A. !> On exit, the lower triangle (if UPLO='L') or the upper !> triangle (if UPLO='U') of A, including the diagonal, is !> destroyed. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
VL
!> VL is REAL !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
VU
!> VU is REAL !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
IL
!> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
IU
!> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
ABSTOL
!> ABSTOL is REAL !> The absolute error tolerance for the eigenvalues. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing A to tridiagonal form. !> !> See by Demmel and !> Kahan, LAPACK Working Note #3. !> !> If high relative accuracy is important, set ABSTOL to !> SLAMCH( 'Safe minimum' ). Doing so will guarantee that !> eigenvalues are computed to high relative accuracy when !> possible in future releases. The current code does not !> make any guarantees about high relative accuracy, but !> future releases will. See J. Barlow and J. Demmel, !> , LAPACK Working Note #7, for a discussion !> of which matrices define their eigenvalues to high relative !> accuracy. !>
M
!> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !>
W
!> W is REAL array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !> Supplying N columns is always safe. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
ISUPPZ
!> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i.e., the indices !> indicating the nonzero elements in Z. The i-th eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal !> matrix). The support of the eigenvectors of A is typically !> 1:N because of the orthogonal transformations applied by SORMTR. !> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, 26*N, dimension) where !> dimension = max(stage1,stage2) + (KD+1)*N + 5*N !> = N*KD + N*max(KD+1,FACTOPTNB) !> + max(2*KD*KD, KD*NTHREADS) !> + (KD+1)*N + 5*N !> where KD is the blocking size of the reduction, !> FACTOPTNB is the blocking used by the QR or LQ !> algorithm, usually FACTOPTNB=128 is a good choice !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= max(1,10*N). !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: Internal error !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of California at Berkeley, USA
Jason Riedy, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of California at Berkeley, USA
Jason Riedy, Computer Science Division, University of California at Berkeley, USA
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 378 of file ssyevr_2stage.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |