table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sorgtsqr.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sorgtsqr.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sorgtsqr.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SORGTSQR (m, n, mb, nb, a, lda, t, ldt, work,
lwork, info)
SORGTSQR
Function/Subroutine Documentation¶
subroutine SORGTSQR (integer m, integer n, integer mb, integer nb, real, dimension( lda, * ) a, integer lda, real, dimension( ldt, * ) t, integer ldt, real, dimension( * ) work, integer lwork, integer info)¶
SORGTSQR
Purpose:
!> !> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns, !> which are the first N columns of a product of real orthogonal !> matrices of order M which are returned by SLATSQR !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). !> !> See the documentation for SLATSQR. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !>
MB
!> MB is INTEGER !> The row block size used by SLATSQR to return !> arrays A and T. MB > N. !> (Note that if MB > M, then M is used instead of MB !> as the row block size). !>
NB
!> NB is INTEGER !> The column block size used by SLATSQR to return !> arrays A and T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size). !>
A
!> A is REAL array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not accessed. !> The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by SLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored) (same format as the output A !> below the diagonal in SLATSQR). !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i.e the columns of A are orthogonal unit vectors. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is REAL array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB). The block !> reflectors are stored in compact form in NIRB block !> reflector sequences. Each of NIRB block reflector sequences !> is stored in a larger NB-by-N column block of T and consists !> of NICB smaller NB-by-NB upper-triangular column blocks. !> (same format as the output T in SLATSQR). !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB1,N)). !>
WORK
!> (workspace) REAL array, dimension (MAX(2,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= (M+NB)*N. !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 174 of file sorgtsqr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |