Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slasr.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slasr.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slasr.f

SYNOPSIS

Functions/Subroutines


subroutine SLASR (side, pivot, direct, m, n, c, s, a, lda)
SLASR applies a sequence of plane rotations to a general rectangular matrix.

Function/Subroutine Documentation

subroutine SLASR (character side, character pivot, character direct, integer m, integer n, real, dimension( * ) c, real, dimension( * ) s, real, dimension( lda, * ) a, integer lda)

SLASR applies a sequence of plane rotations to a general rectangular matrix.

Purpose:

!>
!> SLASR applies a sequence of plane rotations to a real matrix A,
!> from either the left or the right.
!>
!> When SIDE = 'L', the transformation takes the form
!>
!>    A := P*A
!>
!> and when SIDE = 'R', the transformation takes the form
!>
!>    A := A*P**T
!>
!> where P is an orthogonal matrix consisting of a sequence of z plane
!> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
!> and P**T is the transpose of P.
!>
!> When DIRECT = 'F' (Forward sequence), then
!>
!>    P = P(z-1) * ... * P(2) * P(1)
!>
!> and when DIRECT = 'B' (Backward sequence), then
!>
!>    P = P(1) * P(2) * ... * P(z-1)
!>
!> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
!>
!>    R(k) = (  c(k)  s(k) )
!>         = ( -s(k)  c(k) ).
!>
!> When PIVOT = 'V' (Variable pivot), the rotation is performed
!> for the plane (k,k+1), i.e., P(k) has the form
!>
!>    P(k) = (  1                                            )
!>           (       ...                                     )
!>           (              1                                )
!>           (                   c(k)  s(k)                  )
!>           (                  -s(k)  c(k)                  )
!>           (                                1              )
!>           (                                     ...       )
!>           (                                            1  )
!>
!> where R(k) appears as a rank-2 modification to the identity matrix in
!> rows and columns k and k+1.
!>
!> When PIVOT = 'T' (Top pivot), the rotation is performed for the
!> plane (1,k+1), so P(k) has the form
!>
!>    P(k) = (  c(k)                    s(k)                 )
!>           (         1                                     )
!>           (              ...                              )
!>           (                     1                         )
!>           ( -s(k)                    c(k)                 )
!>           (                                 1             )
!>           (                                      ...      )
!>           (                                             1 )
!>
!> where R(k) appears in rows and columns 1 and k+1.
!>
!> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
!> performed for the plane (k,z), giving P(k) the form
!>
!>    P(k) = ( 1                                             )
!>           (      ...                                      )
!>           (             1                                 )
!>           (                  c(k)                    s(k) )
!>           (                         1                     )
!>           (                              ...              )
!>           (                                     1         )
!>           (                 -s(k)                    c(k) )
!>
!> where R(k) appears in rows and columns k and z.  The rotations are
!> performed without ever forming P(k) explicitly.
!> 

Parameters

SIDE

!>          SIDE is CHARACTER*1
!>          Specifies whether the plane rotation matrix P is applied to
!>          A on the left or the right.
!>          = 'L':  Left, compute A := P*A
!>          = 'R':  Right, compute A:= A*P**T
!> 

PIVOT

!>          PIVOT is CHARACTER*1
!>          Specifies the plane for which P(k) is a plane rotation
!>          matrix.
!>          = 'V':  Variable pivot, the plane (k,k+1)
!>          = 'T':  Top pivot, the plane (1,k+1)
!>          = 'B':  Bottom pivot, the plane (k,z)
!> 

DIRECT

!>          DIRECT is CHARACTER*1
!>          Specifies whether P is a forward or backward sequence of
!>          plane rotations.
!>          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
!>          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  If m <= 1, an immediate
!>          return is effected.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  If n <= 1, an
!>          immediate return is effected.
!> 

C

!>          C is REAL array, dimension
!>                  (M-1) if SIDE = 'L'
!>                  (N-1) if SIDE = 'R'
!>          The cosines c(k) of the plane rotations.
!> 

S

!>          S is REAL array, dimension
!>                  (M-1) if SIDE = 'L'
!>                  (N-1) if SIDE = 'R'
!>          The sines s(k) of the plane rotations.  The 2-by-2 plane
!>          rotation part of the matrix P(k), R(k), has the form
!>          R(k) = (  c(k)  s(k) )
!>                 ( -s(k)  c(k) ).
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The M-by-N matrix A.  On exit, A is overwritten by P*A if
!>          SIDE = 'R' or by A*P**T if SIDE = 'L'.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 198 of file slasr.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK