Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f

SYNOPSIS

Functions/Subroutines


real function SLANST (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.

Function/Subroutine Documentation

real function SLANST (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)

SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.

Purpose:

!>
!> SLANST  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> real symmetric tridiagonal matrix A.
!> 

Returns

SLANST

!>
!>    SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM

!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANST as described
!>          above.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, SLANST is
!>          set to zero.
!> 

D

!>          D is REAL array, dimension (N)
!>          The diagonal elements of A.
!> 

E

!>          E is REAL array, dimension (N-1)
!>          The (n-1) sub-diagonal or super-diagonal elements of A.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 99 of file slanst.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK