table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanst.f
SYNOPSIS¶
Functions/Subroutines¶
real function SLANST (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix.
Function/Subroutine Documentation¶
real function SLANST (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)¶
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
!> !> SLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
Returns
SLANST
!> !> SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANST as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANST is !> set to zero. !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of A. !>
E
!> E is REAL array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file slanst.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |