Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f

SYNOPSIS

Functions/Subroutines


real function SLANHS (norm, n, a, lda, work)
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Function/Subroutine Documentation

real function SLANHS (character norm, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)

SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Purpose:

!>
!> SLANHS  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> Hessenberg matrix A.
!> 

Returns

SLANHS

!>
!>    SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM

!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANHS as described
!>          above.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, SLANHS is
!>          set to zero.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The n by n upper Hessenberg matrix A; the part of A below the
!>          first sub-diagonal is not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(N,1).
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file slanhs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK