table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slanhs.f
SYNOPSIS¶
Functions/Subroutines¶
real function SLANHS (norm, n, a, lda, work)
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of an upper Hessenberg matrix.
Function/Subroutine Documentation¶
real function SLANHS (character norm, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Purpose:
!> !> SLANHS returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> Hessenberg matrix A. !>
Returns
SLANHS
!> !> SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANHS as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANHS is !> set to zero. !>
A
!> A is REAL array, dimension (LDA,N) !> The n by n upper Hessenberg matrix A; the part of A below the !> first sub-diagonal is not referenced. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 107 of file slanhs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |