table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slaed5.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slaed5.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/slaed5.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SLAED5 (i, d, z, delta, rho, dlam)
SLAED5 used by SSTEDC. Solves the 2-by-2 secular equation.
Function/Subroutine Documentation¶
subroutine SLAED5 (integer i, real, dimension( 2 ) d, real, dimension( 2 ) z, real, dimension( 2 ) delta, real rho, real dlam)¶
SLAED5 used by SSTEDC. Solves the 2-by-2 secular equation.
Purpose:
!> !> This subroutine computes the I-th eigenvalue of a symmetric rank-one !> modification of a 2-by-2 diagonal matrix !> !> diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal elements in the array D are assumed to satisfy !> !> D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
I
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is REAL array, dimension (2) !> The original eigenvalues. We assume D(1) < D(2). !>
Z
!> Z is REAL array, dimension (2) !> The components of the updating vector. !>
DELTA
!> DELTA is REAL array, dimension (2) !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is REAL !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is REAL !> The computed lambda_I, the I-th updated eigenvalue. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Definition at line 107 of file slaed5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |