table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/shst01.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/shst01.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/shst01.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SHST01 (n, ilo, ihi, a, lda, h, ldh, q, ldq,
work, lwork, result)
SHST01
Function/Subroutine Documentation¶
subroutine SHST01 (integer n, integer ilo, integer ihi, real, dimension( lda, * ) a, integer lda, real, dimension( ldh, * ) h, integer ldh, real, dimension( ldq, * ) q, integer ldq, real, dimension( lwork ) work, integer lwork, real, dimension( 2 ) result)¶
SHST01
Purpose:
!> !> SHST01 tests the reduction of a general matrix A to upper Hessenberg !> form: A = Q*H*Q'. Two test ratios are computed; !> !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> !> The matrix Q is assumed to be given explicitly as it would be !> following SGEHRD + SORGHR. !> !> In this version, ILO and IHI are not used and are assumed to be 1 and !> N, respectively. !>
Parameters
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> A is assumed to be upper triangular in rows and columns !> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in !> rows and columns ILO+1:IHI. !>
A
!> A is REAL array, dimension (LDA,N) !> The original n by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
H
!> H is REAL array, dimension (LDH,N) !> The upper Hessenberg matrix H from the reduction A = Q*H*Q' !> as computed by SGEHRD. H is assumed to be zero below the !> first subdiagonal. !>
LDH
!> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !>
Q
!> Q is REAL array, dimension (LDQ,N) !> The orthogonal matrix Q from the reduction A = Q*H*Q' as !> computed by SGEHRD + SORGHR. !>
LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 2*N*N. !>
RESULT
!> RESULT is REAL array, dimension (2) !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 132 of file shst01.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |