Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/shsein.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/shsein.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/shsein.f

SYNOPSIS

Functions/Subroutines


subroutine SHSEIN (side, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)
SHSEIN

Function/Subroutine Documentation

subroutine SHSEIN (character side, character eigsrc, character initv, logical, dimension( * ) select, integer n, real, dimension( ldh, * ) h, integer ldh, real, dimension( * ) wr, real, dimension( * ) wi, real, dimension( ldvl, * ) vl, integer ldvl, real, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, real, dimension( * ) work, integer, dimension( * ) ifaill, integer, dimension( * ) ifailr, integer info)

SHSEIN

Purpose:

!>
!> SHSEIN uses inverse iteration to find specified right and/or left
!> eigenvectors of a real upper Hessenberg matrix H.
!>
!> The right eigenvector x and the left eigenvector y of the matrix H
!> corresponding to an eigenvalue w are defined by:
!>
!>              H * x = w * x,     y**h * H = w * y**h
!>
!> where y**h denotes the conjugate transpose of the vector y.
!> 

Parameters

SIDE

!>          SIDE is CHARACTER*1
!>          = 'R': compute right eigenvectors only;
!>          = 'L': compute left eigenvectors only;
!>          = 'B': compute both right and left eigenvectors.
!> 

EIGSRC

!>          EIGSRC is CHARACTER*1
!>          Specifies the source of eigenvalues supplied in (WR,WI):
!>          = 'Q': the eigenvalues were found using SHSEQR; thus, if
!>                 H has zero subdiagonal elements, and so is
!>                 block-triangular, then the j-th eigenvalue can be
!>                 assumed to be an eigenvalue of the block containing
!>                 the j-th row/column.  This property allows SHSEIN to
!>                 perform inverse iteration on just one diagonal block.
!>          = 'N': no assumptions are made on the correspondence
!>                 between eigenvalues and diagonal blocks.  In this
!>                 case, SHSEIN must always perform inverse iteration
!>                 using the whole matrix H.
!> 

INITV

!>          INITV is CHARACTER*1
!>          = 'N': no initial vectors are supplied;
!>          = 'U': user-supplied initial vectors are stored in the arrays
!>                 VL and/or VR.
!> 

SELECT

!>          SELECT is LOGICAL array, dimension (N)
!>          Specifies the eigenvectors to be computed. To select the
!>          real eigenvector corresponding to a real eigenvalue WR(j),
!>          SELECT(j) must be set to .TRUE.. To select the complex
!>          eigenvector corresponding to a complex eigenvalue
!>          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
!>          either SELECT(j) or SELECT(j+1) or both must be set to
!>          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
!>          .FALSE..
!> 

N

!>          N is INTEGER
!>          The order of the matrix H.  N >= 0.
!> 

H

!>          H is REAL array, dimension (LDH,N)
!>          The upper Hessenberg matrix H.
!>          If a NaN is detected in H, the routine will return with INFO=-6.
!> 

LDH

!>          LDH is INTEGER
!>          The leading dimension of the array H.  LDH >= max(1,N).
!> 

WR

!>          WR is REAL array, dimension (N)
!> 

WI

!>          WI is REAL array, dimension (N)
!>
!>          On entry, the real and imaginary parts of the eigenvalues of
!>          H; a complex conjugate pair of eigenvalues must be stored in
!>          consecutive elements of WR and WI.
!>          On exit, WR may have been altered since close eigenvalues
!>          are perturbed slightly in searching for independent
!>          eigenvectors.
!> 

VL

!>          VL is REAL array, dimension (LDVL,MM)
!>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
!>          contain starting vectors for the inverse iteration for the
!>          left eigenvectors; the starting vector for each eigenvector
!>          must be in the same column(s) in which the eigenvector will
!>          be stored.
!>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
!>          specified by SELECT will be stored consecutively in the
!>          columns of VL, in the same order as their eigenvalues. A
!>          complex eigenvector corresponding to a complex eigenvalue is
!>          stored in two consecutive columns, the first holding the real
!>          part and the second the imaginary part.
!>          If SIDE = 'R', VL is not referenced.
!> 

LDVL

!>          LDVL is INTEGER
!>          The leading dimension of the array VL.
!>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
!> 

VR

!>          VR is REAL array, dimension (LDVR,MM)
!>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
!>          contain starting vectors for the inverse iteration for the
!>          right eigenvectors; the starting vector for each eigenvector
!>          must be in the same column(s) in which the eigenvector will
!>          be stored.
!>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
!>          specified by SELECT will be stored consecutively in the
!>          columns of VR, in the same order as their eigenvalues. A
!>          complex eigenvector corresponding to a complex eigenvalue is
!>          stored in two consecutive columns, the first holding the real
!>          part and the second the imaginary part.
!>          If SIDE = 'L', VR is not referenced.
!> 

LDVR

!>          LDVR is INTEGER
!>          The leading dimension of the array VR.
!>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
!> 

MM

!>          MM is INTEGER
!>          The number of columns in the arrays VL and/or VR. MM >= M.
!> 

M

!>          M is INTEGER
!>          The number of columns in the arrays VL and/or VR required to
!>          store the eigenvectors; each selected real eigenvector
!>          occupies one column and each selected complex eigenvector
!>          occupies two columns.
!> 

WORK

!>          WORK is REAL array, dimension ((N+2)*N)
!> 

IFAILL

!>          IFAILL is INTEGER array, dimension (MM)
!>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
!>          eigenvector in the i-th column of VL (corresponding to the
!>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
!>          eigenvector converged satisfactorily. If the i-th and (i+1)th
!>          columns of VL hold a complex eigenvector, then IFAILL(i) and
!>          IFAILL(i+1) are set to the same value.
!>          If SIDE = 'R', IFAILL is not referenced.
!> 

IFAILR

!>          IFAILR is INTEGER array, dimension (MM)
!>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
!>          eigenvector in the i-th column of VR (corresponding to the
!>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
!>          eigenvector converged satisfactorily. If the i-th and (i+1)th
!>          columns of VR hold a complex eigenvector, then IFAILR(i) and
!>          IFAILR(i+1) are set to the same value.
!>          If SIDE = 'L', IFAILR is not referenced.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, i is the number of eigenvectors which
!>                failed to converge; see IFAILL and IFAILR for further
!>                details.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Each eigenvector is normalized so that the element of largest
!>  magnitude has magnitude 1; here the magnitude of a complex number
!>  (x,y) is taken to be |x|+|y|.
!> 

Definition at line 260 of file shsein.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK