table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sggev.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sggev.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sggev.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SGGEV (jobvl, jobvr, n, a, lda, b, ldb, alphar,
alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
SGGEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for GE matrices
Function/Subroutine Documentation¶
subroutine SGGEV (character jobvl, character jobvr, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( ldvl, * ) vl, integer ldvl, real, dimension( ldvr, * ) vr, integer ldvr, real, dimension( * ) work, integer lwork, integer info)¶
SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Purpose:
!> !> SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) !> the generalized eigenvalues, and optionally, the left and/or right !> generalized eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar !> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is !> singular. It is usually represented as the pair (alpha,beta), as !> there is a reasonable interpretation for beta=0, and even for both !> being zero. !> !> The right eigenvector v(j) corresponding to the eigenvalue lambda(j) !> of (A,B) satisfies !> !> A * v(j) = lambda(j) * B * v(j). !> !> The left eigenvector u(j) corresponding to the eigenvalue lambda(j) !> of (A,B) satisfies !> !> u(j)**H * A = lambda(j) * u(j)**H * B . !> !> where u(j)**H is the conjugate-transpose of u(j). !> !>
Parameters
JOBVL
!> JOBVL is CHARACTER*1 !> = 'N': do not compute the left generalized eigenvectors; !> = 'V': compute the left generalized eigenvectors. !>
JOBVR
!> JOBVR is CHARACTER*1 !> = 'N': do not compute the right generalized eigenvectors; !> = 'V': compute the right generalized eigenvectors. !>
N
!> N is INTEGER !> The order of the matrices A, B, VL, and VR. N >= 0. !>
A
!> A is REAL array, dimension (LDA, N) !> On entry, the matrix A in the pair (A,B). !> On exit, A has been overwritten. !>
LDA
!> LDA is INTEGER !> The leading dimension of A. LDA >= max(1,N). !>
B
!> B is REAL array, dimension (LDB, N) !> On entry, the matrix B in the pair (A,B). !> On exit, B has been overwritten. !>
LDB
!> LDB is INTEGER !> The leading dimension of B. LDB >= max(1,N). !>
ALPHAR
!> ALPHAR is REAL array, dimension (N) !>
ALPHAI
!> ALPHAI is REAL array, dimension (N) !>
BETA
!> BETA is REAL array, dimension (N) !> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will !> be the generalized eigenvalues. If ALPHAI(j) is zero, then !> the j-th eigenvalue is real; if positive, then the j-th and !> (j+1)-st eigenvalues are a complex conjugate pair, with !> ALPHAI(j+1) negative. !> !> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) !> may easily over- or underflow, and BETA(j) may even be zero. !> Thus, the user should avoid naively computing the ratio !> alpha/beta. However, ALPHAR and ALPHAI will be always less !> than and usually comparable with norm(A) in magnitude, and !> BETA always less than and usually comparable with norm(B). !>
VL
!> VL is REAL array, dimension (LDVL,N) !> If JOBVL = 'V', the left eigenvectors u(j) are stored one !> after another in the columns of VL, in the same order as !> their eigenvalues. If the j-th eigenvalue is real, then !> u(j) = VL(:,j), the j-th column of VL. If the j-th and !> (j+1)-th eigenvalues form a complex conjugate pair, then !> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). !> Each eigenvector is scaled so the largest component has !> abs(real part)+abs(imag. part)=1. !> Not referenced if JOBVL = 'N'. !>
LDVL
!> LDVL is INTEGER !> The leading dimension of the matrix VL. LDVL >= 1, and !> if JOBVL = 'V', LDVL >= N. !>
VR
!> VR is REAL array, dimension (LDVR,N) !> If JOBVR = 'V', the right eigenvectors v(j) are stored one !> after another in the columns of VR, in the same order as !> their eigenvalues. If the j-th eigenvalue is real, then !> v(j) = VR(:,j), the j-th column of VR. If the j-th and !> (j+1)-th eigenvalues form a complex conjugate pair, then !> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). !> Each eigenvector is scaled so the largest component has !> abs(real part)+abs(imag. part)=1. !> Not referenced if JOBVR = 'N'. !>
LDVR
!> LDVR is INTEGER !> The leading dimension of the matrix VR. LDVR >= 1, and !> if JOBVR = 'V', LDVR >= N. !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,8*N). !> For good performance, LWORK must generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> = 1,...,N: !> The QZ iteration failed. No eigenvectors have been !> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) !> should be correct for j=INFO+1,...,N. !> > N: =N+1: other than QZ iteration failed in SHGEQZ. !> =N+2: error return from STGEVC. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 224 of file sggev.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |