Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgelqt3.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgelqt3.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgelqt3.f

SYNOPSIS

Functions/Subroutines


recursive subroutine SGELQT3 (m, n, a, lda, t, ldt, info)
SGELQT3

Function/Subroutine Documentation

recursive subroutine SGELQT3 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldt, * ) t, integer ldt, integer info)

SGELQT3

Purpose:

!>
!> SGELQT3 recursively computes a LQ factorization of a real M-by-N
!> matrix A, using the compact WY representation of Q.
!>
!> Based on the algorithm of Elmroth and Gustavson,
!> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M =< N.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the real M-by-N matrix A.  On exit, the elements on and
!>          below the diagonal contain the N-by-N lower triangular matrix L; the
!>          elements above the diagonal are the rows of V.  See below for
!>          further details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

T

!>          T is REAL array, dimension (LDT,N)
!>          The N-by-N upper triangular factor of the block reflector.
!>          The elements on and above the diagonal contain the block
!>          reflector T; the elements below the diagonal are not used.
!>          See below for further details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix V stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal. For example, if M=5 and N=3, the matrix V is
!>
!>               V = (  1  v1 v1 v1 v1 )
!>                   (     1  v2 v2 v2 )
!>                   (     1  v3 v3 v3 )
!>
!>
!>  where the vi's represent the vectors which define H(i), which are returned
!>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
!>  block reflector H is then given by
!>
!>               H = I - V * T * V**T
!>
!>  where V**T is the transpose of V.
!>
!>  For details of the algorithm, see Elmroth and Gustavson (cited above).
!> 

Definition at line 115 of file sgelqt3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK