table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgebal.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgebal.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/sgebal.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SGEBAL (job, n, a, lda, ilo, ihi, scale, info)
SGEBAL
Function/Subroutine Documentation¶
subroutine SGEBAL (character job, integer n, real, dimension( lda, * ) a, integer lda, integer ilo, integer ihi, real, dimension( * ) scale, integer info)¶
SGEBAL
Purpose:
!> !> SGEBAL balances a general real matrix A. This involves, first, !> permuting A by a similarity transformation to isolate eigenvalues !> in the first 1 to ILO-1 and last IHI+1 to N elements on the !> diagonal; and second, applying a diagonal similarity transformation !> to rows and columns ILO to IHI to make the rows and columns as !> close in norm as possible. Both steps are optional. !> !> Balancing may reduce the 1-norm of the matrix, and improve the !> accuracy of the computed eigenvalues and/or eigenvectors. !>
Parameters
JOB
!> JOB is CHARACTER*1 !> Specifies the operations to be performed on A: !> = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 !> for i = 1,...,N; !> = 'P': permute only; !> = 'S': scale only; !> = 'B': both permute and scale. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the input matrix A. !> On exit, A is overwritten by the balanced matrix. !> If JOB = 'N', A is not referenced. !> See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> ILO and IHI are set to integers such that on exit !> A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. !> If JOB = 'N' or 'S', ILO = 1 and IHI = N. !>
SCALE
!> SCALE is REAL array, dimension (N) !> Details of the permutations and scaling factors applied to !> A. If P(j) is the index of the row and column interchanged !> with row and column j and D(j) is the scaling factor !> applied to row and column j, then !> SCALE(j) = P(j) for j = 1,...,ILO-1 !> = D(j) for j = ILO,...,IHI !> = P(j) for j = IHI+1,...,N. !> The order in which the interchanges are made is N to IHI+1, !> then 1 to ILO-1. !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The permutations consist of row and column interchanges which put !> the matrix in the form !> !> ( T1 X Y ) !> P A P = ( 0 B Z ) !> ( 0 0 T2 ) !> !> where T1 and T2 are upper triangular matrices whose eigenvalues lie !> along the diagonal. The column indices ILO and IHI mark the starting !> and ending columns of the submatrix B. Balancing consists of applying !> a diagonal similarity transformation inv(D) * B * D to make the !> 1-norms of each row of B and its corresponding column nearly equal. !> The output matrix is !> !> ( T1 X*D Y ) !> ( 0 inv(D)*B*D inv(D)*Z ). !> ( 0 0 T2 ) !> !> Information about the permutations P and the diagonal matrix D is !> returned in the vector SCALE. !> !> This subroutine is based on the EISPACK routine BALANC. !> !> Modified by Tzu-Yi Chen, Computer Science Division, University of !> California at Berkeley, USA !> !> Refactored by Evert Provoost, Department of Computer Science, !> KU Leuven, Belgium !>
Definition at line 162 of file sgebal.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |