Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvbd.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvbd.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/sdrvbd.f

SYNOPSIS

Functions/Subroutines


subroutine SDRVBD (nsizes, mm, nn, ntypes, dotype, iseed, thresh, a, lda, u, ldu, vt, ldvt, asav, usav, vtsav, s, ssav, e, work, lwork, iwork, nout, info)
SDRVBD

Function/Subroutine Documentation

subroutine SDRVBD (integer nsizes, integer, dimension( * ) mm, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, real thresh, real, dimension( lda, * ) a, integer lda, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldvt, * ) vt, integer ldvt, real, dimension( lda, * ) asav, real, dimension( ldu, * ) usav, real, dimension( ldvt, * ) vtsav, real, dimension( * ) s, real, dimension( * ) ssav, real, dimension( * ) e, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer nout, integer info)

SDRVBD

Purpose:

!>
!> SDRVBD checks the singular value decomposition (SVD) drivers
!> SGESVD, SGESDD, SGESVDQ, SGESVJ, SGEJSV, and DGESVDX.
!>
!> Both SGESVD and SGESDD factor A = U diag(S) VT, where U and VT are
!> orthogonal and diag(S) is diagonal with the entries of the array S
!> on its diagonal. The entries of S are the singular values,
!> nonnegative and stored in decreasing order.  U and VT can be
!> optionally not computed, overwritten on A, or computed partially.
!>
!> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN.
!> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N.
!>
!> When SDRVBD is called, a number of matrix  (M's and N's)
!> and a number of matrix  are specified.  For each size (M,N)
!> and each type of matrix, and for the minimal workspace as well as
!> workspace adequate to permit blocking, an  M x N  matrix  will be
!> generated and used to test the SVD routines.  For each matrix, A will
!> be factored as A = U diag(S) VT and the following 12 tests computed:
!>
!> Test for SGESVD:
!>
!> (1)    | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (2)    | I - U'U | / ( M ulp )
!>
!> (3)    | I - VT VT' | / ( N ulp )
!>
!> (4)    S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> (5)    | U - Upartial | / ( M ulp ) where Upartial is a partially
!>        computed U.
!>
!> (6)    | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>        computed VT.
!>
!> (7)    | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>        vector of singular values from the partial SVD
!>
!> Test for SGESDD:
!>
!> (8)    | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (9)    | I - U'U | / ( M ulp )
!>
!> (10)   | I - VT VT' | / ( N ulp )
!>
!> (11)   S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> (12)   | U - Upartial | / ( M ulp ) where Upartial is a partially
!>        computed U.
!>
!> (13)   | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>        computed VT.
!>
!> (14)   | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>        vector of singular values from the partial SVD
!>
!> Test for SGESVDQ:
!>
!> (36)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (37)   | I - U'U | / ( M ulp )
!>
!> (38)   | I - VT VT' | / ( N ulp )
!>
!> (39)   S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> Test for SGESVJ:
!>
!> (15)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (16)   | I - U'U | / ( M ulp )
!>
!> (17)   | I - VT VT' | / ( N ulp )
!>
!> (18)   S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> Test for SGEJSV:
!>
!> (19)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (20)   | I - U'U | / ( M ulp )
!>
!> (21)   | I - VT VT' | / ( N ulp )
!>
!> (22)   S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> Test for SGESVDX( 'V', 'V', 'A' )/SGESVDX( 'N', 'N', 'A' )
!>
!> (23)   | A - U diag(S) VT | / ( |A| max(M,N) ulp )
!>
!> (24)   | I - U'U | / ( M ulp )
!>
!> (25)   | I - VT VT' | / ( N ulp )
!>
!> (26)   S contains MNMIN nonnegative values in decreasing order.
!>        (Return 0 if true, 1/ULP if false.)
!>
!> (27)   | U - Upartial | / ( M ulp ) where Upartial is a partially
!>        computed U.
!>
!> (28)   | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
!>        computed VT.
!>
!> (29)   | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
!>        vector of singular values from the partial SVD
!>
!> Test for SGESVDX( 'V', 'V', 'I' )
!>
!> (30)   | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
!>
!> (31)   | I - U'U | / ( M ulp )
!>
!> (32)   | I - VT VT' | / ( N ulp )
!>
!> Test for SGESVDX( 'V', 'V', 'V' )
!>
!> (33)   | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
!>
!> (34)   | I - U'U | / ( M ulp )
!>
!> (35)   | I - VT VT' | / ( N ulp )
!>
!> The  are specified by the arrays MM(1:NSIZES) and
!> NN(1:NSIZES); the value of each element pair (MM(j),NN(j))
!> specifies one size.  The  are specified by a logical array
!> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type 
!> will be generated.
!> Currently, the list of possible types is:
!>
!> (1)  The zero matrix.
!> (2)  The identity matrix.
!> (3)  A matrix of the form  U D V, where U and V are orthogonal and
!>      D has evenly spaced entries 1, ..., ULP with random signs
!>      on the diagonal.
!> (4)  Same as (3), but multiplied by the underflow-threshold / ULP.
!> (5)  Same as (3), but multiplied by the overflow-threshold * ULP.
!> 

Parameters

NSIZES

!>          NSIZES is INTEGER
!>          The number of matrix sizes (M,N) contained in the vectors
!>          MM and NN.
!> 

MM

!>          MM is INTEGER array, dimension (NSIZES)
!>          The values of the matrix row dimension M.
!> 

NN

!>          NN is INTEGER array, dimension (NSIZES)
!>          The values of the matrix column dimension N.
!> 

NTYPES

!>          NTYPES is INTEGER
!>          The number of elements in DOTYPE.   If it is zero, SDRVBD
!>          does nothing.  It must be at least zero.  If it is MAXTYP+1
!>          and NSIZES is 1, then an additional type, MAXTYP+1 is
!>          defined, which is to use whatever matrices are in A and B.
!>          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
!>          DOTYPE(MAXTYP+1) is .TRUE. .
!> 

DOTYPE

!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
!>          of type j will be generated.  If NTYPES is smaller than the
!>          maximum number of types defined (PARAMETER MAXTYP), then
!>          types NTYPES+1 through MAXTYP will not be generated.  If
!>          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
!>          DOTYPE(NTYPES) will be ignored.
!> 

ISEED

!>          ISEED is INTEGER array, dimension (4)
!>          On entry, the seed of the random number generator.  The array
!>          elements should be between 0 and 4095; if not they will be
!>          reduced mod 4096.  Also, ISEED(4) must be odd.
!>          On exit, ISEED is changed and can be used in the next call to
!>          SDRVBD to continue the same random number sequence.
!> 

THRESH

!>          THRESH is REAL
!>          The threshold value for the test ratios.  A result is
!>          included in the output file if RESULT >= THRESH.  The test
!>          ratios are scaled to be O(1), so THRESH should be a small
!>          multiple of 1, e.g., 10 or 100.  To have every test ratio
!>          printed, use THRESH = 0.
!> 

A

!>          A is REAL array, dimension (LDA,NMAX)
!>          where NMAX is the maximum value of N in NN.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,MMAX),
!>          where MMAX is the maximum value of M in MM.
!> 

U

!>          U is REAL array, dimension (LDU,MMAX)
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of the array U.  LDU >= max(1,MMAX).
!> 

VT

!>          VT is REAL array, dimension (LDVT,NMAX)
!> 

LDVT

!>          LDVT is INTEGER
!>          The leading dimension of the array VT.  LDVT >= max(1,NMAX).
!> 

ASAV

!>          ASAV is REAL array, dimension (LDA,NMAX)
!> 

USAV

!>          USAV is REAL array, dimension (LDU,MMAX)
!> 

VTSAV

!>          VTSAV is REAL array, dimension (LDVT,NMAX)
!> 

S

!>          S is REAL array, dimension
!>                      (max(min(MM,NN)))
!> 

SSAV

!>          SSAV is REAL array, dimension
!>                      (max(min(MM,NN)))
!> 

E

!>          E is REAL array, dimension
!>                      (max(min(MM,NN)))
!> 

WORK

!>          WORK is REAL array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The number of entries in WORK.  This must be at least
!>          max(3*MN+MX,5*MN-4)+2*MN**2 for all pairs
!>          pairs  (MN,MX)=( min(MM(j),NN(j), max(MM(j),NN(j)) )
!> 

IWORK

!>          IWORK is INTEGER array, dimension at least 8*min(M,N)
!> 

NOUT

!>          NOUT is INTEGER
!>          The FORTRAN unit number for printing out error messages
!>          (e.g., if a routine returns IINFO not equal to 0.)
!> 

INFO

!>          INFO is INTEGER
!>          If 0, then everything ran OK.
!>           -1: NSIZES < 0
!>           -2: Some MM(j) < 0
!>           -3: Some NN(j) < 0
!>           -4: NTYPES < 0
!>           -7: THRESH < 0
!>          -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
!>          -12: LDU < 1 or LDU < MMAX.
!>          -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ).
!>          -21: LWORK too small.
!>          If  SLATMS, or SGESVD returns an error code, the
!>              absolute value of it is returned.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 363 of file sdrvbd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK