table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtpttf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtpttf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtpttf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DTPTTF (transr, uplo, n, ap, arf, info)
DTPTTF copies a triangular matrix from the standard packed format (TP)
to the rectangular full packed format (TF).
Function/Subroutine Documentation¶
subroutine DTPTTF (character transr, character uplo, integer n, double precision, dimension( 0: * ) ap, double precision, dimension( 0: * ) arf, integer info)¶
DTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
Purpose:
!> !> DTPTTF copies a triangular matrix A from standard packed format (TP) !> to rectangular full packed format (TF). !>
Parameters
TRANSR
!> TRANSR is CHARACTER*1 !> = 'N': ARF in Normal format is wanted; !> = 'T': ARF in Conjugate-transpose format is wanted. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), !> On entry, the upper or lower triangular matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !>
ARF
!> ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), !> On exit, the upper or lower triangular matrix A stored in !> RFP format. For a further discussion see Notes below. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> We first consider Rectangular Full Packed (RFP) Format when N is !> even. We give an example where N = 6. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 05 00 !> 11 12 13 14 15 10 11 !> 22 23 24 25 20 21 22 !> 33 34 35 30 31 32 33 !> 44 45 40 41 42 43 44 !> 55 50 51 52 53 54 55 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last !> three columns of AP upper. The lower triangle A(4:6,0:2) consists of !> the transpose of the first three columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:2,0:2) consists of !> the transpose of the last three columns of AP lower. !> This covers the case N even and TRANSR = 'N'. !> !> RFP A RFP A !> !> 03 04 05 33 43 53 !> 13 14 15 00 44 54 !> 23 24 25 10 11 55 !> 33 34 35 20 21 22 !> 00 44 45 30 31 32 !> 01 11 55 40 41 42 !> 02 12 22 50 51 52 !> !> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the !> transpose of RFP A above. One therefore gets: !> !> !> RFP A RFP A !> !> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 !> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 !> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 !> !> !> We then consider Rectangular Full Packed (RFP) Format when N is !> odd. We give an example where N = 5. !> !> AP is Upper AP is Lower !> !> 00 01 02 03 04 00 !> 11 12 13 14 10 11 !> 22 23 24 20 21 22 !> 33 34 30 31 32 33 !> 44 40 41 42 43 44 !> !> !> Let TRANSR = 'N'. RFP holds AP as follows: !> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last !> three columns of AP upper. The lower triangle A(3:4,0:1) consists of !> the transpose of the first two columns of AP upper. !> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first !> three columns of AP lower. The upper triangle A(0:1,1:2) consists of !> the transpose of the last two columns of AP lower. !> This covers the case N odd and TRANSR = 'N'. !> !> RFP A RFP A !> !> 02 03 04 00 33 43 !> 12 13 14 10 11 44 !> 22 23 24 20 21 22 !> 00 33 34 30 31 32 !> 01 11 44 40 41 42 !> !> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the !> transpose of RFP A above. One therefore gets: !> !> RFP A RFP A !> !> 02 12 22 00 01 00 10 20 30 40 50 !> 03 13 23 33 11 33 11 21 31 41 51 !> 04 14 24 34 44 43 44 22 32 42 52 !>
Definition at line 185 of file dtpttf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |