Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtprfb.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtprfb.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dtprfb.f

SYNOPSIS

Functions/Subroutines


subroutine DTPRFB (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
DTPRFB applies a real triangular-pentagonal"blockreflectortoarealmatrix,whichiscomposedoftwoblocks.

Function/Subroutine Documentation

subroutine DTPRFB (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldwork, * ) work, integer ldwork)

DTPRFB applies a real "triangular-pentagonal" block reflector to a real matrix, which is composed of two blocks.

Purpose:

!>
!> DTPRFB applies a real  block reflector H or its
!> transpose H**T to a real matrix C, which is composed of two
!> blocks A and B, either from the left or right.
!>
!> 

Parameters

SIDE

!>          SIDE is CHARACTER*1
!>          = 'L': apply H or H**T from the Left
!>          = 'R': apply H or H**T from the Right
!> 

TRANS

!>          TRANS is CHARACTER*1
!>          = 'N': apply H (No transpose)
!>          = 'T': apply H**T (Transpose)
!> 

DIRECT

!>          DIRECT is CHARACTER*1
!>          Indicates how H is formed from a product of elementary
!>          reflectors
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> 

STOREV

!>          STOREV is CHARACTER*1
!>          Indicates how the vectors which define the elementary
!>          reflectors are stored:
!>          = 'C': Columns
!>          = 'R': Rows
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix B.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B.
!>          N >= 0.
!> 

K

!>          K is INTEGER
!>          The order of the matrix T, i.e. the number of elementary
!>          reflectors whose product defines the block reflector.
!>          K >= 0.
!> 

L

!>          L is INTEGER
!>          The order of the trapezoidal part of V.
!>          K >= L >= 0.  See Further Details.
!> 

V

!>          V is DOUBLE PRECISION array, dimension
!>                                (LDV,K) if STOREV = 'C'
!>                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
!>                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
!>          The pentagonal matrix V, which contains the elementary reflectors
!>          H(1), H(2), ..., H(K).  See Further Details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
!>          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
!>          if STOREV = 'R', LDV >= K.
!> 

T

!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The triangular K-by-K matrix T in the representation of the
!>          block reflector.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.
!>          LDT >= K.
!> 

A

!>          A is DOUBLE PRECISION array, dimension
!>          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
!>          On entry, the K-by-N or M-by-K matrix A.
!>          On exit, A is overwritten by the corresponding block of
!>          H*C or H**T*C or C*H or C*H**T.  See Further Details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDA >= max(1,K);
!>          If SIDE = 'R', LDA >= max(1,M).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,N)
!>          On entry, the M-by-N matrix B.
!>          On exit, B is overwritten by the corresponding block of
!>          H*C or H**T*C or C*H or C*H**T.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          LDB >= max(1,M).
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension
!>          (LDWORK,N) if SIDE = 'L',
!>          (LDWORK,K) if SIDE = 'R'.
!> 

LDWORK

!>          LDWORK is INTEGER
!>          The leading dimension of the array WORK.
!>          If SIDE = 'L', LDWORK >= K;
!>          if SIDE = 'R', LDWORK >= M.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix C is a composite matrix formed from blocks A and B.
!>  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
!>  and if SIDE = 'L', A is of size K-by-N.
!>
!>  If SIDE = 'R' and DIRECT = 'F', C = [A B].
!>
!>  If SIDE = 'L' and DIRECT = 'F', C = [A]
!>                                      [B].
!>
!>  If SIDE = 'R' and DIRECT = 'B', C = [B A].
!>
!>  If SIDE = 'L' and DIRECT = 'B', C = [B]
!>                                      [A].
!>
!>  The pentagonal matrix V is composed of a rectangular block V1 and a
!>  trapezoidal block V2.  The size of the trapezoidal block is determined by
!>  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
!>  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
!>
!>  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
!>                                         [V2]
!>     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
!>
!>  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]
!>
!>     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
!>
!>  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
!>                                         [V1]
!>     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
!>
!>  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
!>
!>     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
!>
!>  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
!>
!>  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
!>
!>  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
!>
!>  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.
!> 

Definition at line 249 of file dtprfb.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK