Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/BLAS/SRC/dtbsv.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/BLAS/SRC/dtbsv.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/BLAS/SRC/dtbsv.f

SYNOPSIS

Functions/Subroutines


subroutine DTBSV (uplo, trans, diag, n, k, a, lda, x, incx)
DTBSV

Function/Subroutine Documentation

subroutine DTBSV (character uplo, character trans, character diag, integer n, integer k, double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x, integer incx)

DTBSV

Purpose:

!>
!> DTBSV  solves one of the systems of equations
!>
!>    A*x = b,   or   A**T*x = b,
!>
!> where b and x are n element vectors and A is an n by n unit, or
!> non-unit, upper or lower triangular band matrix, with ( k + 1 )
!> diagonals.
!>
!> No test for singularity or near-singularity is included in this
!> routine. Such tests must be performed before calling this routine.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> 

TRANS

!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the equations to be solved as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   A*x = b.
!>
!>              TRANS = 'T' or 't'   A**T*x = b.
!>
!>              TRANS = 'C' or 'c'   A**T*x = b.
!> 

DIAG

!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit
!>           triangular as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> 

N

!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> 

K

!>          K is INTEGER
!>           On entry with UPLO = 'U' or 'u', K specifies the number of
!>           super-diagonals of the matrix A.
!>           On entry with UPLO = 'L' or 'l', K specifies the number of
!>           sub-diagonals of the matrix A.
!>           K must satisfy  0 .le. K.
!> 

A

!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
!>           by n part of the array A must contain the upper triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row
!>           ( k + 1 ) of the array, the first super-diagonal starting at
!>           position 2 in row k, and so on. The top left k by k triangle
!>           of the array A is not referenced.
!>           The following program segment will transfer an upper
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = K + 1 - J
!>                    DO 10, I = MAX( 1, J - K ), J
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
!>           by n part of the array A must contain the lower triangular
!>           band part of the matrix of coefficients, supplied column by
!>           column, with the leading diagonal of the matrix in row 1 of
!>           the array, the first sub-diagonal starting at position 1 in
!>           row 2, and so on. The bottom right k by k triangle of the
!>           array A is not referenced.
!>           The following program segment will transfer a lower
!>           triangular band matrix from conventional full matrix storage
!>           to band storage:
!>
!>                 DO 20, J = 1, N
!>                    M = 1 - J
!>                    DO 10, I = J, MIN( N, J + K )
!>                       A( M + I, J ) = matrix( I, J )
!>              10    CONTINUE
!>              20 CONTINUE
!>
!>           Note that when DIAG = 'U' or 'u' the elements of the array A
!>           corresponding to the diagonal elements of the matrix are not
!>           referenced, but are assumed to be unity.
!> 

LDA

!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           ( k + 1 ).
!> 

X

!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element right-hand side vector b. On exit, X is overwritten
!>           with the solution vector x.
!> 

INCX

!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Level 2 Blas routine.
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> 

Definition at line 188 of file dtbsv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK