Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsygv.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsygv.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsygv.f

SYNOPSIS

Functions/Subroutines


subroutine DSYGV (itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
DSYGV

Function/Subroutine Documentation

subroutine DSYGV (integer itype, character jobz, character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) w, double precision, dimension( * ) work, integer lwork, integer info)

DSYGV

Purpose:

!>
!> DSYGV computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
!> Here A and B are assumed to be symmetric and B is also
!> positive definite.
!> 

Parameters

ITYPE

!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          matrix Z of eigenvectors.  The eigenvectors are normalized
!>          as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
!>          or the lower triangle (if UPLO='L') of A, including the
!>          diagonal, is destroyed.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          On entry, the symmetric positive definite matrix B.
!>          If UPLO = 'U', the leading N-by-N upper triangular part of B
!>          contains the upper triangular part of the matrix B.
!>          If UPLO = 'L', the leading N-by-N lower triangular part of B
!>          contains the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= max(1,3*N-1).
!>          For optimal efficiency, LWORK >= (NB+2)*N,
!>          where NB is the blocksize for DSYTRD returned by ILAENV.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  DPOTRF or DSYEV returned an error code:
!>             <= N:  if INFO = i, DSYEV failed to converge;
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 173 of file dsygv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK