table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgvd.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgvd.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgvd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DSBGVD (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, iwork, liwork, info)
DSBGVD
Function/Subroutine Documentation¶
subroutine DSBGVD (character jobz, character uplo, integer n, integer ka, integer kb, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
DSBGVD
Purpose:
!> !> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite banded eigenproblem, of the !> form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and !> banded, and B is also positive definite. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is DOUBLE PRECISION array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**T*S, as returned by DPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so Z**T*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= 2*N. !> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 219 of file dsbgvd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |