table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgv.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgv.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgv.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DSBGV (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, info)
DSBGV
Function/Subroutine Documentation¶
subroutine DSBGV (character jobz, character uplo, integer n, integer ka, integer kb, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer info)¶
DSBGV
Purpose:
!> !> DSBGV computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite banded eigenproblem, of !> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric !> and banded, and B is also positive definite. !>
Parameters
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is DOUBLE PRECISION array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**T*S, as returned by DPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so that Z**T*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= N. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (3*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 175 of file dsbgv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |