table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgst.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgst.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dsbgst.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DSBGST (vect, uplo, n, ka, kb, ab, ldab, bb,
ldbb, x, ldx, work, info)
DSBGST
Function/Subroutine Documentation¶
subroutine DSBGST (character vect, character uplo, integer n, integer ka, integer kb, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) work, integer info)¶
DSBGST
Purpose:
!> !> DSBGST reduces a real symmetric-definite banded generalized !> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, !> such that C has the same bandwidth as A. !> !> B must have been previously factorized as S**T*S by DPBSTF, using a !> split Cholesky factorization. A is overwritten by C = X**T*A*X, where !> X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the !> bandwidth of A. !>
Parameters
VECT
!> VECT is CHARACTER*1 !> = 'N': do not form the transformation matrix X; !> = 'V': form X. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB,N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the transformed matrix X**T*A*X, stored in the same !> format as A. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is DOUBLE PRECISION array, dimension (LDBB,N) !> The banded factor S from the split Cholesky factorization of !> B, as returned by DPBSTF, stored in the first KB+1 rows of !> the array. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
X
!> X is DOUBLE PRECISION array, dimension (LDX,N) !> If VECT = 'V', the n-by-n matrix X. !> If VECT = 'N', the array X is not referenced. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. !> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file dsbgst.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |