table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dla_porcond.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dla_porcond.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dla_porcond.f
SYNOPSIS¶
Functions/Subroutines¶
double precision function DLA_PORCOND (uplo, n, a, lda, af,
ldaf, cmode, c, info, work, iwork)
DLA_PORCOND estimates the Skeel condition number for a symmetric
positive-definite matrix.
Function/Subroutine Documentation¶
double precision function DLA_PORCOND (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer cmode, double precision, dimension( * ) c, integer info, double precision, dimension( * ) work, integer, dimension( * ) iwork)¶
DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
Purpose:
!> !> DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C) !> where op2 is determined by CMODE as follows !> CMODE = 1 op2(C) = C !> CMODE = 0 op2(C) = I !> CMODE = -1 op2(C) = inv(C) !> The Skeel condition number cond(A) = norminf( |inv(A)||A| ) !> is computed by computing scaling factors R such that !> diag(R)*A*op2(C) is row equilibrated and computing the standard !> infinity-norm condition number. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
AF
!> AF is DOUBLE PRECISION array, dimension (LDAF,N) !> The triangular factor U or L from the Cholesky factorization !> A = U**T*U or A = L*L**T, as computed by DPOTRF. !>
LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
CMODE
!> CMODE is INTEGER !> Determines op2(C) in the formula op(A) * op2(C) as follows: !> CMODE = 1 op2(C) = C !> CMODE = 0 op2(C) = I !> CMODE = -1 op2(C) = inv(C) !>
C
!> C is DOUBLE PRECISION array, dimension (N) !> The vector C in the formula op(A) * op2(C). !>
INFO
!> INFO is INTEGER !> = 0: Successful exit. !> i > 0: The ith argument is invalid. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (3*N). !> Workspace. !>
IWORK
!> IWORK is INTEGER array, dimension (N). !> Workspace. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file dla_porcond.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |