Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/dlatm6.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/dlatm6.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/dlatm6.f

SYNOPSIS

Functions/Subroutines


subroutine DLATM6 (type, n, a, lda, b, x, ldx, y, ldy, alpha, beta, wx, wy, s, dif)
DLATM6

Function/Subroutine Documentation

subroutine DLATM6 (integer type, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( lda, * ) b, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( ldy, * ) y, integer ldy, double precision alpha, double precision beta, double precision wx, double precision wy, double precision, dimension( * ) s, double precision, dimension( * ) dif)

DLATM6

Purpose:

!>
!> DLATM6 generates test matrices for the generalized eigenvalue
!> problem, their corresponding right and left eigenvector matrices,
!> and also reciprocal condition numbers for all eigenvalues and
!> the reciprocal condition numbers of eigenvectors corresponding to
!> the 1th and 5th eigenvalues.
!>
!> Test Matrices
!> =============
!>
!> Two kinds of test matrix pairs
!>
!>       (A, B) = inverse(YH) * (Da, Db) * inverse(X)
!>
!> are used in the tests:
!>
!> Type 1:
!>    Da = 1+a   0    0    0    0    Db = 1   0   0   0   0
!>          0   2+a   0    0    0         0   1   0   0   0
!>          0    0   3+a   0    0         0   0   1   0   0
!>          0    0    0   4+a   0         0   0   0   1   0
!>          0    0    0    0   5+a ,      0   0   0   0   1 , and
!>
!> Type 2:
!>    Da =  1   -1    0    0    0    Db = 1   0   0   0   0
!>          1    1    0    0    0         0   1   0   0   0
!>          0    0    1    0    0         0   0   1   0   0
!>          0    0    0   1+a  1+b        0   0   0   1   0
!>          0    0    0  -1-b  1+a ,      0   0   0   0   1 .
!>
!> In both cases the same inverse(YH) and inverse(X) are used to compute
!> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
!>
!> YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x
!>         0    1   -y    y   -y         0   1   x  -x  -x
!>         0    0    1    0    0         0   0   1   0   0
!>         0    0    0    1    0         0   0   0   1   0
!>         0    0    0    0    1,        0   0   0   0   1 ,
!>
!> where a, b, x and y will have all values independently of each other.
!> 

Parameters

TYPE

!>          TYPE is INTEGER
!>          Specifies the problem type (see further details).
!> 

N

!>          N is INTEGER
!>          Size of the matrices A and B.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA, N).
!>          On exit A N-by-N is initialized according to TYPE.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A and of B.
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDA, N).
!>          On exit B N-by-N is initialized according to TYPE.
!> 

X

!>          X is DOUBLE PRECISION array, dimension (LDX, N).
!>          On exit X is the N-by-N matrix of right eigenvectors.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of X.
!> 

Y

!>          Y is DOUBLE PRECISION array, dimension (LDY, N).
!>          On exit Y is the N-by-N matrix of left eigenvectors.
!> 

LDY

!>          LDY is INTEGER
!>          The leading dimension of Y.
!> 

ALPHA

!>          ALPHA is DOUBLE PRECISION
!> 

BETA

!>          BETA is DOUBLE PRECISION
!>
!>          Weighting constants for matrix A.
!> 

WX

!>          WX is DOUBLE PRECISION
!>          Constant for right eigenvector matrix.
!> 

WY

!>          WY is DOUBLE PRECISION
!>          Constant for left eigenvector matrix.
!> 

S

!>          S is DOUBLE PRECISION array, dimension (N)
!>          S(i) is the reciprocal condition number for eigenvalue i.
!> 

DIF

!>          DIF is DOUBLE PRECISION array, dimension (N)
!>          DIF(i) is the reciprocal condition number for eigenvector i.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 174 of file dlatm6.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK