Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlarrf.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlarrf.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlarrf.f

SYNOPSIS

Functions/Subroutines


subroutine DLARRF (n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr, pivmin, sigma, dplus, lplus, work, info)
DLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

Function/Subroutine Documentation

subroutine DLARRF (integer n, double precision, dimension( * ) d, double precision, dimension( * ) l, double precision, dimension( * ) ld, integer clstrt, integer clend, double precision, dimension( * ) w, double precision, dimension( * ) wgap, double precision, dimension( * ) werr, double precision spdiam, double precision clgapl, double precision clgapr, double precision pivmin, double precision sigma, double precision, dimension( * ) dplus, double precision, dimension( * ) lplus, double precision, dimension( * ) work, integer info)

DLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

Purpose:

!>
!> Given the initial representation L D L^T and its cluster of close
!> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
!> W( CLEND ), DLARRF finds a new relatively robust representation
!> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
!> eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
!> 

Parameters

N

!>          N is INTEGER
!>          The order of the matrix (subblock, if the matrix split).
!> 

D

!>          D is DOUBLE PRECISION array, dimension (N)
!>          The N diagonal elements of the diagonal matrix D.
!> 

L

!>          L is DOUBLE PRECISION array, dimension (N-1)
!>          The (N-1) subdiagonal elements of the unit bidiagonal
!>          matrix L.
!> 

LD

!>          LD is DOUBLE PRECISION array, dimension (N-1)
!>          The (N-1) elements L(i)*D(i).
!> 

CLSTRT

!>          CLSTRT is INTEGER
!>          The index of the first eigenvalue in the cluster.
!> 

CLEND

!>          CLEND is INTEGER
!>          The index of the last eigenvalue in the cluster.
!> 

W

!>          W is DOUBLE PRECISION array, dimension
!>          dimension is >=  (CLEND-CLSTRT+1)
!>          The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
!>          W( CLSTRT ) through W( CLEND ) form the cluster of relatively
!>          close eigenalues.
!> 

WGAP

!>          WGAP is DOUBLE PRECISION array, dimension
!>          dimension is >=  (CLEND-CLSTRT+1)
!>          The separation from the right neighbor eigenvalue in W.
!> 

WERR

!>          WERR is DOUBLE PRECISION array, dimension
!>          dimension is  >=  (CLEND-CLSTRT+1)
!>          WERR contain the semiwidth of the uncertainty
!>          interval of the corresponding eigenvalue APPROXIMATION in W
!> 

SPDIAM

!>          SPDIAM is DOUBLE PRECISION
!>          estimate of the spectral diameter obtained from the
!>          Gerschgorin intervals
!> 

CLGAPL

!>          CLGAPL is DOUBLE PRECISION
!> 

CLGAPR

!>          CLGAPR is DOUBLE PRECISION
!>          absolute gap on each end of the cluster.
!>          Set by the calling routine to protect against shifts too close
!>          to eigenvalues outside the cluster.
!> 

PIVMIN

!>          PIVMIN is DOUBLE PRECISION
!>          The minimum pivot allowed in the Sturm sequence.
!> 

SIGMA

!>          SIGMA is DOUBLE PRECISION
!>          The shift used to form L(+) D(+) L(+)^T.
!> 

DPLUS

!>          DPLUS is DOUBLE PRECISION array, dimension (N)
!>          The N diagonal elements of the diagonal matrix D(+).
!> 

LPLUS

!>          LPLUS is DOUBLE PRECISION array, dimension (N-1)
!>          The first (N-1) elements of LPLUS contain the subdiagonal
!>          elements of the unit bidiagonal matrix L(+).
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (2*N)
!>          Workspace.
!> 

INFO

!>          INFO is INTEGER
!>          Signals processing OK (=0) or failure (=1)
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 189 of file dlarrf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK