table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlantp.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlantp.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlantp.f
SYNOPSIS¶
Functions/Subroutines¶
double precision function DLANTP (norm, uplo, diag, n, ap,
work)
DLANTP returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a triangular
matrix supplied in packed form.
Function/Subroutine Documentation¶
double precision function DLANTP (character norm, character uplo, character diag, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) work)¶
DLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
Purpose:
!> !> DLANTP returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> triangular matrix A, supplied in packed form. !>
Returns
DLANTP
!> !> DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANTP as described !> above. !>
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
DIAG
!> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, DLANTP is !> set to zero. !>
AP
!> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> Note that when DIAG = 'U', the elements of the array AP !> corresponding to the diagonal elements of the matrix A are !> not referenced, but are assumed to be one. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 123 of file dlantp.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |