table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlaed5.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlaed5.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlaed5.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DLAED5 (i, d, z, delta, rho, dlam)
DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation.
Function/Subroutine Documentation¶
subroutine DLAED5 (integer i, double precision, dimension( 2 ) d, double precision, dimension( 2 ) z, double precision, dimension( 2 ) delta, double precision rho, double precision dlam)¶
DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation.
Purpose:
!> !> This subroutine computes the I-th eigenvalue of a symmetric rank-one !> modification of a 2-by-2 diagonal matrix !> !> diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal elements in the array D are assumed to satisfy !> !> D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
I
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is DOUBLE PRECISION array, dimension (2) !> The original eigenvalues. We assume D(1) < D(2). !>
Z
!> Z is DOUBLE PRECISION array, dimension (2) !> The components of the updating vector. !>
DELTA
!> DELTA is DOUBLE PRECISION array, dimension (2) !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is DOUBLE PRECISION !> The computed lambda_I, the I-th updated eigenvalue. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Definition at line 107 of file dlaed5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |