table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlacon.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlacon.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dlacon.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DLACON (n, v, x, isgn, est, kase)
DLACON estimates the 1-norm of a square matrix, using reverse
communication for evaluating matrix-vector products.
Function/Subroutine Documentation¶
subroutine DLACON (integer n, double precision, dimension( * ) v, double precision, dimension( * ) x, integer, dimension( * ) isgn, double precision est, integer kase)¶
DLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
Purpose:
!> !> DLACON estimates the 1-norm of a square, real matrix A. !> Reverse communication is used for evaluating matrix-vector products. !>
Parameters
N
!> N is INTEGER !> The order of the matrix. N >= 1. !>
V
!> V is DOUBLE PRECISION array, dimension (N) !> On the final return, V = A*W, where EST = norm(V)/norm(W) !> (W is not returned). !>
X
!> X is DOUBLE PRECISION array, dimension (N) !> On an intermediate return, X should be overwritten by !> A * X, if KASE=1, !> A**T * X, if KASE=2, !> and DLACON must be re-called with all the other parameters !> unchanged. !>
ISGN
!> ISGN is INTEGER array, dimension (N) !>
EST
!> EST is DOUBLE PRECISION !> On entry with KASE = 1 or 2 and JUMP = 3, EST should be !> unchanged from the previous call to DLACON. !> On exit, EST is an estimate (a lower bound) for norm(A). !>
KASE
!> KASE is INTEGER !> On the initial call to DLACON, KASE should be 0. !> On an intermediate return, KASE will be 1 or 2, indicating !> whether X should be overwritten by A * X or A**T * X. !> On the final return from DLACON, KASE will again be 0. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Nick Higham, University of Manchester.
Originally named SONEST, dated March 16, 1988.
Originally named SONEST, dated March 16, 1988.
References:
N.J. Higham, 'FORTRAN codes for estimating the one-norm
of a real or complex matrix, with applications to condition estimation', ACM
Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
Definition at line 114 of file dlacon.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |