table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgttrf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgttrf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dgttrf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DGTTRF (n, dl, d, du, du2, ipiv, info)
DGTTRF
Function/Subroutine Documentation¶
subroutine DGTTRF (integer n, double precision, dimension( * ) dl, double precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( * ) du2, integer, dimension( * ) ipiv, integer info)¶
DGTTRF
Purpose:
!> !> DGTTRF computes an LU factorization of a real tridiagonal matrix A !> using elimination with partial pivoting and row interchanges. !> !> The factorization has the form !> A = L * U !> where L is a product of permutation and unit lower bidiagonal !> matrices and U is upper triangular with nonzeros in only the main !> diagonal and first two superdiagonals. !>
Parameters
N
!> N is INTEGER !> The order of the matrix A. !>
DL
!> DL is DOUBLE PRECISION array, dimension (N-1) !> On entry, DL must contain the (n-1) sub-diagonal elements of !> A. !> !> On exit, DL is overwritten by the (n-1) multipliers that !> define the matrix L from the LU factorization of A. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> On entry, D must contain the diagonal elements of A. !> !> On exit, D is overwritten by the n diagonal elements of the !> upper triangular matrix U from the LU factorization of A. !>
DU
!> DU is DOUBLE PRECISION array, dimension (N-1) !> On entry, DU must contain the (n-1) super-diagonal elements !> of A. !> !> On exit, DU is overwritten by the (n-1) elements of the first !> super-diagonal of U. !>
DU2
!> DU2 is DOUBLE PRECISION array, dimension (N-2) !> On exit, DU2 is overwritten by the (n-2) elements of the !> second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> > 0: if INFO = k, U(k,k) is exactly zero. The factorization !> has been completed, but the factor U is exactly !> singular, and division by zero will occur if it is used !> to solve a system of equations. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 123 of file dgttrf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |