table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggev3.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggev3.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dggev3.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DGGEV3 (jobvl, jobvr, n, a, lda, b, ldb, alphar,
alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
DGGEV3 computes the eigenvalues and, optionally, the left and/or right
eigenvectors for GE matrices (blocked algorithm)
Function/Subroutine Documentation¶
subroutine DGGEV3 (character jobvl, character jobvr, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) alphar, double precision, dimension( * ) alphai, double precision, dimension( * ) beta, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision, dimension( ldvr, * ) vr, integer ldvr, double precision, dimension( * ) work, integer lwork, integer info)¶
DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)
Purpose:
!> !> DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B) !> the generalized eigenvalues, and optionally, the left and/or right !> generalized eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar !> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is !> singular. It is usually represented as the pair (alpha,beta), as !> there is a reasonable interpretation for beta=0, and even for both !> being zero. !> !> The right eigenvector v(j) corresponding to the eigenvalue lambda(j) !> of (A,B) satisfies !> !> A * v(j) = lambda(j) * B * v(j). !> !> The left eigenvector u(j) corresponding to the eigenvalue lambda(j) !> of (A,B) satisfies !> !> u(j)**H * A = lambda(j) * u(j)**H * B . !> !> where u(j)**H is the conjugate-transpose of u(j). !> !>
Parameters
JOBVL
!> JOBVL is CHARACTER*1 !> = 'N': do not compute the left generalized eigenvectors; !> = 'V': compute the left generalized eigenvectors. !>
JOBVR
!> JOBVR is CHARACTER*1 !> = 'N': do not compute the right generalized eigenvectors; !> = 'V': compute the right generalized eigenvectors. !>
N
!> N is INTEGER !> The order of the matrices A, B, VL, and VR. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA, N) !> On entry, the matrix A in the pair (A,B). !> On exit, A has been overwritten. !>
LDA
!> LDA is INTEGER !> The leading dimension of A. LDA >= max(1,N). !>
B
!> B is DOUBLE PRECISION array, dimension (LDB, N) !> On entry, the matrix B in the pair (A,B). !> On exit, B has been overwritten. !>
LDB
!> LDB is INTEGER !> The leading dimension of B. LDB >= max(1,N). !>
ALPHAR
!> ALPHAR is DOUBLE PRECISION array, dimension (N) !>
ALPHAI
!> ALPHAI is DOUBLE PRECISION array, dimension (N) !>
BETA
!> BETA is DOUBLE PRECISION array, dimension (N) !> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will !> be the generalized eigenvalues. If ALPHAI(j) is zero, then !> the j-th eigenvalue is real; if positive, then the j-th and !> (j+1)-st eigenvalues are a complex conjugate pair, with !> ALPHAI(j+1) negative. !> !> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) !> may easily over- or underflow, and BETA(j) may even be zero. !> Thus, the user should avoid naively computing the ratio !> alpha/beta. However, ALPHAR and ALPHAI will be always less !> than and usually comparable with norm(A) in magnitude, and !> BETA always less than and usually comparable with norm(B). !>
VL
!> VL is DOUBLE PRECISION array, dimension (LDVL,N) !> If JOBVL = 'V', the left eigenvectors u(j) are stored one !> after another in the columns of VL, in the same order as !> their eigenvalues. If the j-th eigenvalue is real, then !> u(j) = VL(:,j), the j-th column of VL. If the j-th and !> (j+1)-th eigenvalues form a complex conjugate pair, then !> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). !> Each eigenvector is scaled so the largest component has !> abs(real part)+abs(imag. part)=1. !> Not referenced if JOBVL = 'N'. !>
LDVL
!> LDVL is INTEGER !> The leading dimension of the matrix VL. LDVL >= 1, and !> if JOBVL = 'V', LDVL >= N. !>
VR
!> VR is DOUBLE PRECISION array, dimension (LDVR,N) !> If JOBVR = 'V', the right eigenvectors v(j) are stored one !> after another in the columns of VR, in the same order as !> their eigenvalues. If the j-th eigenvalue is real, then !> v(j) = VR(:,j), the j-th column of VR. If the j-th and !> (j+1)-th eigenvalues form a complex conjugate pair, then !> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). !> Each eigenvector is scaled so the largest component has !> abs(real part)+abs(imag. part)=1. !> Not referenced if JOBVR = 'N'. !>
LDVR
!> LDVR is INTEGER !> The leading dimension of the matrix VR. LDVR >= 1, and !> if JOBVR = 'V', LDVR >= N. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> = 1,...,N: !> The QZ iteration failed. No eigenvectors have been !> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) !> should be correct for j=INFO+1,...,N. !> > N: =N+1: other than QZ iteration failed in DLAQZ0. !> =N+2: error return from DTGEVC. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 223 of file dggev3.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |